【題目】如圖,在等腰梯形ABCD中,AD∥BC,CA平分∠BCD,∠B=60°,若AD=3,則梯形ABCD的周長(zhǎng)為( )
A.12
B.15
C.12
D.15
【答案】D
【解析】解:過點(diǎn)A作AE∥CD,交BC于點(diǎn)E, ∵梯形ABCD是等腰梯形,∠B=60°,
∴AD∥BC,
∴四邊形ADCE是平行四邊形,
∴∠AEB=∠BCD=60°,
∵CA平分∠BCD,
∴∠ACE= ∠BCD=30°,
∵∠AEB是△ACE的外角,
∴∠AEB=∠ACE+∠EAC,即60°=30°+∠EAC,
∴∠EAC=30°,
∴AE=CE=3,
∴四邊形ADEC是菱形,
∵△ABE中,∠B=∠AEB=60°,
∴△ABE是等邊三角形,
∴AB=BE=AE=3,
∴梯形ABCD的周長(zhǎng)=AB+(BE+CE)+CD+AD=3+3+3+3+3=15.
故選:D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等腰梯形的性質(zhì)的相關(guān)知識(shí),掌握等腰梯形的兩腰相等;同一底上的兩個(gè)角相等;兩條對(duì)角線相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一個(gè)足球垂直水平地面向上踢,時(shí)間為t(秒)時(shí)該足球距離地面的高度h(米)適用公式h=20t﹣5t2(0≤t≤4).
(1)當(dāng)t=3時(shí),求足球距離地面的高度;
(2)當(dāng)足球距離地面的高度為10米時(shí),求t;
(3)若存在實(shí)數(shù)t1 , t2(t1≠t2)當(dāng)t=t1或t2時(shí),足球距離地面的高度都為m(米),求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在正方形ABCD中,E、F分別是邊BC、CD上的點(diǎn),且∠EAF=45°,把△ADF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABG,請(qǐng)直接寫出圖中所有的全等三角形;
(2)在四邊形ABCD中,AB=AD,∠B=∠D=90°.
①如圖2,若E、F分別是邊BC、CD上的點(diǎn),且2∠EAF=∠BAD,求證:EF=BE+DF;
②若E、F分別是邊BC、CD延長(zhǎng)線上的點(diǎn),且2∠EAF=∠BAD,①中的結(jié)論是否仍然成立?請(qǐng)說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以O為坐標(biāo)原點(diǎn)在正方形網(wǎng)格中建立直角坐標(biāo)系,若每個(gè)小正方形的邊長(zhǎng)都為1,網(wǎng)格中有一個(gè)格點(diǎn)△ABC(即三角形的頂點(diǎn)都在格點(diǎn)上).
(1)試在y軸上找一點(diǎn)P,使PC+PB的值最小,請(qǐng)?jiān)趫D中標(biāo)出P點(diǎn)的位置(留下作圖痕跡),并求出PC+PB的最小值;
(2)將△ABC先向下平移3個(gè)單位,再向右平移4個(gè)單位后得到△A1B1C1,請(qǐng)?jiān)趫D中畫出△A1B1C1,并寫出點(diǎn)A1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,對(duì)于一個(gè)圖形,通過兩種不同的方法計(jì)算它的面積,可以得到一個(gè)等式.例
如圖1可以得到.請(qǐng)解答下列問題:
(1)根據(jù)圖2,完成數(shù)學(xué)等式: = ;
(2)觀察圖3,寫出圖3中所表示的等式: =____________.
(3)若、、,且,請(qǐng)利用(2)所得的結(jié)論求:的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,在平面直角坐標(biāo)系中,點(diǎn)A,B,C都在坐標(biāo)軸上,且OA=OB=OC,△ABC的面積為9,點(diǎn)P從C點(diǎn)出發(fā)沿y軸負(fù)方向以1個(gè)單位/秒的速度向下運(yùn)動(dòng),連接PA,PB,D(﹣m,﹣m)為AC上的點(diǎn)(m>0)
(1)試分別求出A,B,C三點(diǎn)的坐標(biāo);
(2)設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,問:當(dāng)t為何值時(shí),DP與DB垂直且相等?請(qǐng)說明理由;
(3)如圖2,若PA=AB,在第四象限內(nèi)有一動(dòng)點(diǎn)Q,連QA,QB,QP,且∠PQA=60°,當(dāng)Q在第四象限內(nèi)運(yùn)動(dòng)時(shí),求∠APQ與∠PBQ的度數(shù)和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明購買了一部新手機(jī),到某通訊公司咨詢移動(dòng)電話資費(fèi)情況,準(zhǔn)備辦理入網(wǎng)手續(xù),該通訊公司工作人員向他介紹兩種不同的資費(fèi)方案:
方案代號(hào) | 月租費(fèi)(元) | 免費(fèi)時(shí)間(分) | 超過免費(fèi)時(shí)間的通話費(fèi)(元/分) |
一 | 10 | 0 | 0.20 |
二 | 30 | 80 | 0.15 |
(1)分別寫出方案一、二中,月話費(fèi)(月租費(fèi)與通話費(fèi)的總和)y(單位:元)與通話時(shí)間x(單位:分)的函數(shù)關(guān)系式;
(2)畫出(1)中兩個(gè)函數(shù)的圖象;
(3)若小明月通話時(shí)間為200分鐘左右,他應(yīng)該選擇哪種資費(fèi)方案最省錢.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com