【題目】下列計(jì)算正確的是(
A.(﹣x32=x5
B.(﹣3x22=6x4
C.(﹣x)2=
D.x8÷x4=x2

【答案】C
【解析】解:A、(﹣x32=x6 , 故A錯(cuò)誤;
B、(﹣3x22=9x4 , 故B錯(cuò)誤;
C、(﹣x)2= ,故C正確;
D、x8÷x4=x4 , 故D錯(cuò)誤.
故選:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解整數(shù)指數(shù)冪的運(yùn)算性質(zhì)的相關(guān)知識(shí),掌握aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)),以及對(duì)同底數(shù)冪的除法的理解,了解同底數(shù)冪的除法法則:am÷an=am-n(a≠0,m,n都是正整數(shù),且m>n).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),且∠AOB=40°,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動(dòng)點(diǎn),當(dāng)△PMN周長(zhǎng)取最小值時(shí),則∠MPN的度數(shù)為( )

A. 140° B. 100° C. 50° D. 40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解學(xué)校圖書館上個(gè)月借閱情況,管理老師從學(xué)生對(duì)藝術(shù)、經(jīng)濟(jì)、科普及生活四類圖書借閱情況進(jìn)行了統(tǒng)計(jì),并繪制了下列不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息解答下列問題:

(1)上個(gè)月借閱圖書的學(xué)生有多少人?扇形統(tǒng)計(jì)圖中“藝術(shù)”部分的圓心角度數(shù)是多少?
(2)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)從借閱情況分析,如果要添置這四類圖書300冊(cè),請(qǐng)你估算“科普”類圖書應(yīng)添置多少冊(cè)合適?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AC=BC,ACB=90°,DAB的中點(diǎn),點(diǎn)EAB邊上一點(diǎn).

(1)BFCE于點(diǎn)F,交CD于點(diǎn)G(如圖①).求證:AE=CG;

(2)AHCE,垂足為H,交CD的延長(zhǎng)線于點(diǎn)M(如圖②),找出圖中與BE相等的線段,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,E為CD的中點(diǎn),H為BE上的一點(diǎn), ,連接CH并延長(zhǎng)交AB于點(diǎn)G,連接GE并延長(zhǎng)交AD的延長(zhǎng)線于點(diǎn)F.

(1)求證: ;
(2)若∠CGF=90°,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E(與點(diǎn)B、C不重合)是BC邊上一點(diǎn),將線段EA繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°到EF,過點(diǎn)F作BC的垂線交BC的延長(zhǎng)線于點(diǎn)G,連接CF.

(1)求證:△ABE≌△EGF;
(2)若AB=2,SABE=2SECF , 求BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】概念學(xué)習(xí)

規(guī)定:如果一個(gè)三角形的三個(gè)角分別等于另一個(gè)三角形的三個(gè)角,那么稱這兩個(gè)三角形互為“等角三角形”.

從三角形不是等腰三角形一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原來三角形是“等角三角形”,我們把這條線段叫做這個(gè)三角形的“等角分割線”.

理解概念

如圖1,在中,,,請(qǐng)寫出圖中兩對(duì)“等角三角形”概念應(yīng)用

如圖2,在中,CD為角平分線,,

求證:CD的等角分割線.

中,,CD的等角分割線,直接寫出的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,∠A=∠C,點(diǎn)P在邊AB上.

(1)判斷四邊形ABCD的形狀并加以證明;
(2)若AB=AD,以過點(diǎn)P的直線為軸,將四邊形ABCD折疊,使點(diǎn)B、C分別落在點(diǎn)B′、C′上,且B′C′經(jīng)過點(diǎn)D,折痕與四邊形的另一交點(diǎn)為Q.
①在圖2中作出四邊形PB′C′Q(保留作圖痕跡,不必說明作法和理由);
②如果∠C=60°,那么 為何值時(shí),B′P⊥AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,AD∥BC,CA平分∠BCD,∠B=60°,若AD=3,則梯形ABCD的周長(zhǎng)為(
A.12
B.15
C.12
D.15

查看答案和解析>>

同步練習(xí)冊(cè)答案