【題目】某校計(jì)劃一次性購買排球和籃球,每個(gè)籃球的價(jià)格比排球貴30元;購買2個(gè)排球和3個(gè)籃球共需340元.
(1)求每個(gè)排球和籃球的價(jià)格:
(2)若該校一次性購買排球和籃球共60個(gè),總費(fèi)用不超過3800元,且購買排球的個(gè)數(shù)少于39個(gè).設(shè)排球的個(gè)數(shù)為m,總費(fèi)用為y元.
①求y關(guān)于m的函數(shù)關(guān)系式,并求m可取的所有值;
②在學(xué)校按怎樣的方案購買時(shí),費(fèi)用最低?最低費(fèi)用為多少?
【答案】(1)排球50元,籃球80元;(2)①y=-30m+4800 ;m=34、35、36、37、38; ②排球38個(gè),籃球22個(gè)時(shí),費(fèi)用最低為3660.
【解析】
設(shè)每個(gè)排球需要x元,每個(gè)籃球的價(jià)格是y元,根據(jù)題意列出方程組,解方程組即可求解;(2)①設(shè)購買排球m個(gè),則購買籃球(60-m)個(gè),根據(jù)“一次性購買排球和籃球共60個(gè),總費(fèi)用不超過3 800元”不等式組,解不等式組求得m的取值范圍,再結(jié)合買排球的個(gè)數(shù)少于39個(gè)即可求得m的具體數(shù)值;根據(jù)“買排球的總費(fèi)用+買籃球的總費(fèi)用=y”即可求得y關(guān)于m的函數(shù)關(guān)系式;②根據(jù)排球比較便宜,可知購買排球越多,總費(fèi)用越低,由此即可解答.
(1)設(shè)每個(gè)排球需要x元,每個(gè)籃球的價(jià)格是y元,
由題意得: ,
解得: ,
∴購買一個(gè)排球的價(jià)格是50元,每個(gè)籃球的價(jià)格為80元.
(2)①設(shè)購買排球m個(gè),則購買籃球(60-m)個(gè),由題意得:
50m+80(60-m)≤3800,
解得m≥;
∵排球的個(gè)數(shù)少于39個(gè),
∴m<39,
∴排球的個(gè)數(shù)可以為34,35,36,37,38.
∵總費(fèi)用為y元,
∴y=50m+80(60-m)=-30m+4800.
②∵排球比較便宜,
∴購買排球越多,總費(fèi)用越低,
∴當(dāng)購買排球38個(gè),籃球22個(gè)時(shí),費(fèi)用最低,此時(shí)的費(fèi)用為38×50+22×80=1900+1760=3660(元).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在6×8的網(wǎng)格圖中,每個(gè)小正方形邊長均為1,原點(diǎn)O和△ABC的頂點(diǎn)均為格點(diǎn).
(1)以O(shè)為位似中心,在網(wǎng)格圖中作△A′B′C′,使△A′B′C′與△ABC位似,且位似比為1:2;(保留作圖痕跡,不要求寫作法和證明)
(2)若點(diǎn)C和坐標(biāo)為(2,4),則點(diǎn)A′的坐標(biāo)為( , ),點(diǎn)C′的坐標(biāo)為( , ),S△A′B′C′:S△ABC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC 中,AB=AC,∠BAC=90°,D 是BC 上一點(diǎn),EC⊥BC,EC=BD,DF=FE.
求證:(1)△ABD≌△ACE;
(2)AF⊥DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+2x﹣3經(jīng)過點(diǎn)(1,3)
(1)求a的值;
(2)當(dāng)x=3時(shí),求y的值;
(3)求這個(gè)拋物線的對稱軸和頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點(diǎn),直線l:y=x,點(diǎn)A1坐標(biāo)為(4,0),過點(diǎn)A1作x軸的垂線交直線l于點(diǎn)B1,以原點(diǎn)O為圓心,OB1長為半徑畫弧交x軸正半軸于點(diǎn)A2,再過點(diǎn)A2作x軸的垂線交直線l于點(diǎn)B2,以原點(diǎn)O為圓心,OB2為半徑畫弧交x軸正半軸于點(diǎn)A3……按此做法進(jìn)行下去,點(diǎn)A2 017的橫坐標(biāo)為_____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.已知,如圖:在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC是長方形,點(diǎn)A、C、D的坐標(biāo)分別為A(9,0)、C(0,4),D(5,0),點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位長度的速度沿O C B A運(yùn)動(dòng),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=2時(shí),求直線PD的解析式。
(2)當(dāng)P在BC上,OP+PD有最小值時(shí),求點(diǎn)P的坐標(biāo)。
(3)當(dāng)t為何值時(shí),△ODP是腰長為5的等腰三角形?(直接寫出t的值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB:y=﹣x﹣b分別與x,y軸交于A(6,0)、B兩點(diǎn),過點(diǎn)B的直線交x軸負(fù)半軸于C,且OB:OC=3:1.
(1)求點(diǎn)B的坐標(biāo);
(2)求直線BC的解析式;
(3)直線EF:y=2x﹣k(k≠0)交AB于E,交BC于點(diǎn)F,交x軸于點(diǎn)D,是否存在這樣的直線EF,使得S△EBD=S△FBD?若存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC的頂點(diǎn)坐標(biāo)分別是O(0,0),A(3,0),B(4,4),C(-2,3),將點(diǎn)O , A , B , C的橫坐標(biāo)、縱坐標(biāo)都乘以-2.
(1)畫出以變化后的四個(gè)點(diǎn)為頂點(diǎn)的四邊形;
(2)由(1)得到的四邊形與四邊形OABC位似嗎?如果位似,指出位似中心及與原圖形的相似比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列條件:①∠A+∠B=∠C,②∠A∶∠B∶∠C=3∶4∶5,③∠C=∠A-∠B, ④a∶b∶c=3∶4∶5 中,能確定△ABC是直角三角形的條件有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com