【題目】在下列條件:①∠A+∠B=∠C,②∠A∶∠B∶∠C=3∶4∶5,③∠C=∠A-∠B, ④a∶b∶c=3∶4∶5 中,能確定△ABC是直角三角形的條件有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】C

【解析】

根據(jù)直角三角形的判定對(duì)各個(gè)條件進(jìn)行分析,從而得到答案.

①∵∠A+B+C=180°,

∴∠A+B=C=×180°=90°,

∴△ABC是直角三角形,故①正確;

②∵∠A:B:C=3:4:5,∴∠C=×180°=75°,故不是直角三角形;故②錯(cuò)誤;

③因?yàn)椤?/span>C=A-B,則2A=180°,A=90°,故③正確;

④設(shè)a=3x,b=4x,c=5x,a2+b2= =(3x)2+(4x)2=25x2=c2故④正確.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校計(jì)劃一次性購買排球和籃球,每個(gè)籃球的價(jià)格比排球貴30元;購買2個(gè)排球和3個(gè)籃球共需340元.

(1)求每個(gè)排球和籃球的價(jià)格:

(2)若該校一次性購買排球和籃球共60個(gè),總費(fèi)用不超過3800元,且購買排球的個(gè)數(shù)少于39個(gè).設(shè)排球的個(gè)數(shù)為m,總費(fèi)用為y元.

①求y關(guān)于m的函數(shù)關(guān)系式,并求m可取的所有值;

②在學(xué)校按怎樣的方案購買時(shí),費(fèi)用最低?最低費(fèi)用為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在課題學(xué)習(xí)后,同學(xué)們?yōu)榻淌掖皯粼O(shè)計(jì)一個(gè)遮陽蓬,小明同學(xué)繪制的設(shè)計(jì)圖如圖所示,其中,AB表示窗戶,且AB=2.82米,△BCD表示直角遮陽蓬,已知當(dāng)?shù)匾荒曛性谖鐣r(shí)的太陽光與水平線CD的最小夾角α為18°,最大夾角β為66°,根據(jù)以上數(shù)據(jù),計(jì)算出遮陽蓬中CD的長(zhǎng)是(結(jié)果精確到0.1)(參考數(shù)據(jù):sin18°≈0.31,tan18°≈0.32,sin66°≈0.91,tan66°≈2.2)(  )

A.1.2米
B.1.5米
C.1.9米
D.2.5米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,點(diǎn)D,E分別在邊BC,AC上,且DE∥AB,過點(diǎn)EEF⊥DE,交BC的延長(zhǎng)線于點(diǎn)F.

1)求∠F的度數(shù);

2)若CD=2,求DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在下列條件中,不能作為判斷ABD≌△BAC的條件是( )

A. D=C,BAD=ABC B. BAD=ABC,ABD=BAC

C. BD=AC,BAD=ABC D. AD=BC,BD=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:在△ABC中,AB、BC、AC三邊的長(zhǎng)分別為、,求此三角形的面積.小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.

(1)請(qǐng)你將△ABC的面積直接填寫在橫線上:   

思維拓展:

(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法.如果△ABC三邊的長(zhǎng)分別a、a、a(a>0),請(qǐng)利用圖②的正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為a)畫出相應(yīng)的△ABC,并求出它的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠A=90°,BC∥AD,AB=6cm,點(diǎn)P從A出發(fā)沿射線AD運(yùn)動(dòng),速度是每秒1cm,點(diǎn)R從點(diǎn)B出發(fā)沿射線BC運(yùn)動(dòng),速度是每秒2cm,點(diǎn)Q在點(diǎn)P的右側(cè),且PQ=10cm,時(shí)間為t秒;

求:(1)△PQR的面積;

(2)當(dāng)t=1秒時(shí),求PR的長(zhǎng);

(3)當(dāng)t為何值時(shí),△PQR是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,∠ACB=90,DBC延長(zhǎng)線上一點(diǎn),EBD的垂直平分線與AB的交點(diǎn),DEAC于點(diǎn)F,求證:EA=EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一個(gè)寬為2cm的刻度尺在圓形光盤上移動(dòng),當(dāng)刻度尺的一邊與光盤相切時(shí),另一邊與光盤邊緣兩個(gè)交點(diǎn)處的讀數(shù)恰好是“2”和“10”(單位:cm),那么該光盤的直徑是cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案