【題目】如圖,在Rt△ABC中,∠ACB=90°,AO△ABC的角平分線.以O為圓心,OC為半徑作⊙O.

(1)求證:AB⊙O的切線.

2)已知AOO于點E,延長AOO于點D,tanD=,求的值.

(3)在(2)的條件下,設(shè)⊙O的半徑為3,求AB的長.

【答案】(1)證明見解析(2) (3)

【解析】試題分析:(1)過OOF⊥ABF,由角平分線上的點到角兩邊的距離相等即可得證;(2)連接CE,證明△ACE∽△ADC可得= tanD;(3)先由勾股定理求得AE的長,再證明△B0F∽△BAC,得,設(shè)BO="y" ,BF=z,列二元一次方程組即可解決問題.

試題解析:(1)證明:作OF⊥ABF

∵AO∠BAC的角平分線,∠ACB=90

∴OC=OF

∴AB⊙O的切線

2)連接CE

∵AO∠BAC的角平分線,

∴∠CAE=∠CAD

∵∠ACE所對的弧與∠CDE所對的弧是同弧

∴∠ACE=∠CDE

∴△ACE∽△ADC

= tanD

3)先在△ACO中,設(shè)AE=x,

由勾股定理得

(x3)="(2x)" 3 ,解得x="2,"

∵∠BFO=90°=∠ACO

易證Rt△B0F∽Rt△BAC

,

設(shè)BO=y BF=z

4z=93y4y=123z

解得z=y=

∴AB=4=

考點:圓的綜合題.

型】解答
結(jié)束】
22

【題目】已知:二次函數(shù)的圖象與x軸交于A、B兩點,與y軸交于點C,其中點B在x軸的正半軸上,點C在y軸的正半軸上,線段O、OC的長(OB<OC)是方程x2-10x+16=0的兩個根,且A點坐標(biāo)為(-6,0).

(1)求此二次函數(shù)的表達(dá)式;

(2)若點E是線段AB上的一個動點(與點A、點B不重合),過點E作EF∥AC交BC于點F,連接CE,設(shè)AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;

【答案】(1)y=-x2x+8(2)

【解析】試題分析:(1)求出一元二次方程的兩根即可求出兩點坐標(biāo),把B、C兩點坐標(biāo)代入二次函數(shù)的解析式就可解答;

(2)過點FFGAB,垂足為G,由EFAC,得BEF∽△BAC,利用相似比求EF利用sin∠FEG=sin∠CABFG,根據(jù)S=SBCE-SBFE,求Sm之間的函數(shù)關(guān)系式.

解:(1)解方程x2-10x+16=0得x12,x28

∴B20)、C0,8

∴所求二次函數(shù)的表達(dá)式為y=-x2x8

(2)∵AB=8,OC=8,依題意,AE=m,則BE=8-m,

∵OA6OC8, ∴AC10.

∵EF∥AC, ∴△BEF∽△BAC.

.  即. ∴EF.

過點F作FG⊥AB,垂足為G,

sin∠FEGsin∠CAB.∴. 

∴FG·8m.

∴SSBCESBFE

0m8

點睛:本題考查了一元二次方程的解法,待定系數(shù)法求函數(shù)關(guān)系系,相似三角形的判定與性質(zhì),銳角三角函數(shù)的定義,割補法求圖形的面積,熟練掌握待定系數(shù)法求二次函數(shù)關(guān)系式、相似三角形的判定與性質(zhì)是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點C處測得樓頂B的仰角為60°,在斜坡上的D處測得樓頂B的仰角為45°,其中點A,C,E在同一直線上.

(1)求坡底C點到大樓距離AC的值;

(2)求斜坡CD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AB⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點D,點E⊙O上.

1)若∠AOD=52°,求∠DEB的度數(shù);

2)若OC=3OA=5,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角三角形ABC中,BC=6,∠ABC=45°,BD平分∠ABC,M、N分別是BD、BC上的動點,則CM+MN的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為6,E、F分別在AB,ADCE=3,且∠ECF=45°,CF長為(

A. 2 B. 3 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在O的內(nèi)接四邊形ABCD中,AB=AD,C=120°,點E上.

1)求∠E的度數(shù);

2)連接ODOE,當(dāng)∠DOE=90°時,AE恰好為⊙O的內(nèi)接正n邊形的一邊,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+3與x軸相交于點A(﹣1,0)、B(3,0),與y軸相交于點C,點P為線段OB上的動點(不與O、B重合),過點P垂直于x軸的直線與拋物線及線段BC分別交于點E、F,點D在y軸正半軸上,OD=2,連接DE、OF.

(1)求拋物線的解析式;

(2)當(dāng)四邊形ODEF是平行四邊形時,求點P的坐標(biāo);

(3)過點A的直線將(2)中的平行四邊形ODEF分成面積相等的兩部分,求這條直線的解析式.(不必說明平分平行四邊形面積的理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A=45°,AB=,AC=6,點D,E為邊AC上的點,AD=1,CE=2,點F為線段DE上一點(不與D,E重合),分別以點D、E為圓心,DF、EF為半徑作圓.若兩圓與邊AB,BC共有三個交點時,線段DF長度的取值范圍是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某酒店大門的旋轉(zhuǎn)門內(nèi)部由三塊寬為2,高為3米的玻璃隔板組成三塊玻璃擺放時夾角相同若入口處兩根立柱之間的距離為2,則兩立柱底端中點到中央轉(zhuǎn)軸底端的距離為(  )

A. B. 2 C. 2 D. 3

查看答案和解析>>

同步練習(xí)冊答案