【題目】如圖,在△ABC中,∠A=45°,AB=,AC=6,點(diǎn)D,E為邊AC上的點(diǎn),AD=1,CE=2,點(diǎn)F為線段DE上一點(diǎn)(不與D,E重合),分別以點(diǎn)D、E為圓心,DF、EF為半徑作圓.若兩圓與邊AB,BC共有三個(gè)交點(diǎn)時(shí),線段DF長(zhǎng)度的取值范圍是_______.

【答案】

【解析】分析:過(guò)DDGAG,垂足為G,過(guò)E點(diǎn)作EHABH,則可求出DG、EH的長(zhǎng),再根據(jù)兩圓與邊AB,BC共有三個(gè)交點(diǎn)即可求出線段DF長(zhǎng)度的取值范圍.

詳解:過(guò)DDGAG,垂足為G,過(guò)E點(diǎn)作EHABH,

AD=1,A=45°,

DG=ADsin45°=,

AE=6-2=4, A=45°,

EH=AEsin45°=2.

由于兩圓與邊AB,BC共有三個(gè)交點(diǎn).

故可得線段DF長(zhǎng)度的取值范圍為:.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上有三個(gè)點(diǎn)A、B、C,請(qǐng)回答下列問(wèn)題.

1AB、C三點(diǎn)分別表示 、 、 ;

2)將點(diǎn)B向左移動(dòng)3個(gè)單位長(zhǎng)度后,點(diǎn)B所表示的數(shù)是 ;

3)將點(diǎn)A向右移動(dòng)4個(gè)單位長(zhǎng)度后,點(diǎn)A所表示的數(shù)是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)DBC上,DEAB于點(diǎn)EDFBCAC于點(diǎn)F,BD=CF,BE=CD.若∠AFD=145°,則∠EDF=_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖(1),已知:在ABC中,∠BAC90°,ABAC,直線m經(jīng)過(guò)點(diǎn)A,BD⊥直線mCE⊥直線m,垂足分別為點(diǎn)D、E.證明:DEBD+CE

2)如圖(2),將(1)中的條件改為:在ABC中,ABACD、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BACα,其中α為任意銳角或鈍角.請(qǐng)問(wèn)結(jié)論DEBD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.

3)拓展與應(yīng)用:如圖(3),D、ED、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且ABFACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷DEF的形狀并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】12分)某中學(xué)組織學(xué)生去福利院慰問(wèn),在準(zhǔn)備禮品時(shí)發(fā)現(xiàn),購(gòu)買1個(gè)甲禮品比購(gòu)買1個(gè)乙禮品多花40元,并且花費(fèi)600元購(gòu)買甲禮品和花費(fèi)360元購(gòu)買乙禮品的數(shù)量相等.

(1)求甲、乙兩種禮品的單價(jià)各為多少元?

(2)學(xué)校準(zhǔn)備購(gòu)買甲、乙兩種禮品共30個(gè)送給福利院的老人,要求購(gòu)買禮品的總費(fèi)用不超過(guò)2000元,那么最多可購(gòu)買多少個(gè)甲禮品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為引導(dǎo)學(xué)生廣泛閱讀文學(xué)名著,某校在七年級(jí)、八年級(jí)開展了讀書知識(shí)競(jìng)賽.該校七、八年級(jí)各有學(xué)生400人,各隨機(jī)抽取20名學(xué)生進(jìn)行了抽樣調(diào)查,獲得了他們知識(shí)競(jìng)賽成績(jī)(分),并對(duì)數(shù)據(jù)進(jìn)行整理、描述和分析.下面給出了部分信息.

七年級(jí):

74 97 96 89 98 74 65 76 72 78 99 72 97 76 99 74 99 73 98 74

八年級(jí):

76 88 93 65 78 94 89 68 95 50 89 88 89 89 77 94 87 88 92 91

平均數(shù)、中位數(shù)、眾數(shù)如表所示:

根據(jù)以上信息,回答下列問(wèn)題:

1______,______,______;

2)該校對(duì)讀書知識(shí)競(jìng)賽成績(jī)不少于80分的學(xué)生授予“閱讀小能手稱號(hào),請(qǐng)你估計(jì)該校七、八年級(jí)所有學(xué)生中獲得“閱讀小能手”稱號(hào)的大約有______人;

3)結(jié)合以上數(shù)據(jù),你認(rèn)為哪個(gè)年級(jí)讀書知識(shí)競(jìng)賽的總體成績(jī)較好,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠B= 60°.

1)如圖①.若點(diǎn)E、F分別在邊AB、AD上,且BE=AF,求證:CEF是等邊三角形.

2)小明發(fā)現(xiàn),當(dāng)點(diǎn)E、F分別在邊ABAD上,且∠CEF=60°時(shí),CEF也是等邊三角形,

并通過(guò)畫圖驗(yàn)證了猜想;小麗通過(guò)探索,認(rèn)為應(yīng)該以CE= EF為突破口,構(gòu)造兩個(gè)全等三角形:小倩受到小麗的啟發(fā),嘗試在BC上截取BM =BE,并連接ME,如圖②,很快就證明了CEF是等邊三角形.請(qǐng)你根據(jù)小倩的方法,寫出完整的證明過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,AB=ACE,D,F分別是邊AB,BC,AC的中點(diǎn).

1)求證:四邊形AEDF是菱形;

2)若∠B=30°,BC=4 ,求四邊形AEDF的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,下列條件不能判定這個(gè)四邊形是平行四邊形的是

A.ABDC,ADBC  B.AB=DC,AD=BC

C.AO=CO,BO=DO   D.ABDC,AD=BC

查看答案和解析>>

同步練習(xí)冊(cè)答案