【題目】如圖某酒店大門的旋轉(zhuǎn)門內(nèi)部由三塊寬為2,高為3米的玻璃隔板組成,三塊玻璃擺放時夾角相同若入口處兩根立柱之間的距離為2則兩立柱底端中點到中央轉(zhuǎn)軸底端的距離為(  )

A. B. 2 C. 2 D. 3

【答案】A

【解析】

由題意可知:中央轉(zhuǎn)軸就是三塊玻璃的交點O,三塊玻璃在轉(zhuǎn)動中形成以O為圓心,以2米為半徑的圓,再根據(jù)兩根立柱之間的距離為2米,由此畫出圖形,利用等邊三角形的判定與性質(zhì),直角三角形的性質(zhì)解決問題即可.

如圖,

三塊玻璃分別為OA、OC、OE,且OA=OC=OE,

且兩根立柱BC之間的距離為2米,

連接OB,

OB=OE,

OB=BC=OC,

∴△OBC是等邊三角形,

DBC的中點,

ODBC,CD=1米,

OD=米.

故選:A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】老師出示了小黑板上的題后(如圖),小華說:過點(3,0);小彬說:過點(4,3);小明說:a=1;小穎說:拋物線被x軸截得的線段長為2.你認為四人的說法中,正確的有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C 是線段 AB 上一點,且ACD BCE 都是等邊三角形,連接 AE、BD 相交于點 OAE、BD 分別交 CD、CE M、N,連接 MN、OC,則下列所給的結(jié)論中:①AEBD;②CMCN;③MNAB;④∠AOB120;⑤OC 平分∠AOB.其中結(jié)論正確的個數(shù)是(

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y1=k(x-1)與一次函數(shù)y2=-k(x-3)的圖像交于點P,其中k≠0.

1)求點P的橫坐標.

2)點Aa,y)和點Bb,y)分別在y1y2的圖像上,若a=5,b的值.

3)點C(x,m)和點Dx,n)分別在y1y2的圖像上,若m-nk,當k0時,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個長為4cm,寬為3cm的長方形木板在桌面上做無滑動的翻滾(順時針方向),木板點A位置的變化為A→Al→A2,其中第二次翻滾被面上一小木塊擋住,使木板與桌面成30°的角,則點A滾到A2位置時共走過的路徑長為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC與BD交于點O,ABC:BAD=1:2,BEAC,CEBD.

1求tanDBC的值;

2求證:四邊形OBEC是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABC沿著過AB中點D的直線折疊,使點A落在BC邊上的A1,稱為第1次操作,折痕DEBC的距離記為h1;還原紙片后,再將△ADE沿著過AD中點D1的直線折疊,使點A落在DE邊上的A2處,稱為第2次操作,折痕D1E1BC的距離記為h2:按上述方法不斷操作下去…,經(jīng)過第2019次操作后得到的折痕D2018E2018,到BC的距離記為h2019:若h11,則h2019的值為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】國家統(tǒng)計局網(wǎng)站近日發(fā)布一組數(shù)據(jù)顯示,2017年中國創(chuàng)新指數(shù)為196.3,比上年增長6.8%,測算結(jié)果表明,2017年,中國創(chuàng)新環(huán)境進一步優(yōu)化,創(chuàng)新投入力度繼續(xù)加大,創(chuàng)新產(chǎn)出持續(xù)提升,創(chuàng)新成效穩(wěn)步增強,創(chuàng)新能力向高質(zhì)量發(fā)展要求穩(wěn)步邁進.渝北區(qū)政府在創(chuàng)新環(huán)境建設中,擬對城區(qū)部分路段的人行道、綠化帶、排水管道等公用設施更新改造.現(xiàn)有甲、乙兩個工程隊有意承包這項工程,經(jīng)調(diào)查知道,乙工程隊單獨完成此項工程的時間是甲工程隊單獨完成此項工程時間的2倍,若甲、乙兩工程隊合作只需20天完成.

1)甲、乙兩個工程隊單獨完成此項工程各需多少天?

2)市政府決定由甲、乙共同完成此項工程.若甲工程隊每天的工程費用是4.5萬元,乙工程隊每天的工程費用是2.5萬元,若工程總費用不超過143萬元,則甲工程隊至少工作多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐

問題情境

中,,于點,點是射線上一點,連接,過點于點,且交直線于點.

1)如圖1,當點在線段上時,求證:.

自主探究

2)如圖2,當點在線段上時,其它條件不變,請猜想之間的數(shù)量關系,并說明理由.

拓展延伸

3)如圖3,當點在線段的延長線上時,其它條件不變,請直接寫出之間的數(shù)量關系.

查看答案和解析>>

同步練習冊答案