【題目】若反比例函數(shù)y=與一次函數(shù)y=2x-4的圖象都經(jīng)過(guò)點(diǎn)A(a,2).
(1)求反比例函數(shù)y=的表達(dá)式;
(2)當(dāng)反比例函數(shù)y=的值大于一次函數(shù)y=2x-4的值時(shí),求自變量x的取值范圍.
【答案】(1)y=;(2)x<-1或0<x<3.
【解析】
(1)將A坐標(biāo)代入一次函數(shù)解析式求出a的值,確定出A坐標(biāo),將A坐標(biāo)代入反比例解析式求出k的值,即可確定出反比例解析式;
(2)聯(lián)立兩函數(shù)解析式求出交點(diǎn)坐標(biāo),畫(huà)出兩函數(shù)圖象,利用圖象即可得出滿足題意x的范圍.
(1)將A(a,2)代入一次函數(shù)y=2x-4中得:2=2a-4,即a=3,
∴A(3,2),
將x=3,y=2代入反比例解析式得:k=6,
則反比例解析式為y=;
(2)聯(lián)立兩函數(shù)解析式得: ,
解得:或,
即兩函數(shù)的兩交點(diǎn)分別為(3,2),(-1,-6),作出兩函數(shù)圖象,如圖所示:
則由函數(shù)圖象得:反比例函數(shù)y=的值大于一次函數(shù)y=2x-4的值時(shí),自變量x的取值范圍為x<-1或0<x<3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,點(diǎn)D在邊OA上,將圖中的△COD繞點(diǎn)O按每秒10°的速度沿順時(shí)針?lè)较蛐D(zhuǎn)一周,在旋轉(zhuǎn)的過(guò)程中,在第 秒時(shí),邊CD恰好與邊AB平行.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知數(shù)軸上有三點(diǎn)A、B、C,它們對(duì)應(yīng)的數(shù)分別為a、b、c,且c-b=b-a;點(diǎn)C對(duì)應(yīng)的數(shù)是10.
(1)若BC=15,求a、b的值;
(2)如圖2,在(1)的條件下,O為原點(diǎn),動(dòng)點(diǎn)P、Q分別從A、C同時(shí)出發(fā),點(diǎn)P向左運(yùn)動(dòng),運(yùn)動(dòng)速度為2個(gè)單位長(zhǎng)度/秒,點(diǎn)Q向右運(yùn)動(dòng),運(yùn)動(dòng)速度為1個(gè)單位長(zhǎng)度/秒,N為OP的中點(diǎn),M為BQ的中點(diǎn).
①用含t代數(shù)式表示PQ、 MN;
②在P、Q的運(yùn)動(dòng)過(guò)程中,PQ與MN存在一個(gè)確定的等量關(guān)系,請(qǐng)指出他們之間的關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖像經(jīng)過(guò)點(diǎn)(-2,4),且與正比例函數(shù)y=2x的圖像平行.
(1) 求一次函數(shù)y=kx+b的解析式;
(2) 求一次函數(shù)y=kx+b的圖像與坐標(biāo)軸所圍成的三角形的面積;
(3) 若A(a,y1),B(a+b,y2)為一次函數(shù)y=kx+b的圖像上兩個(gè)點(diǎn),試比較y1與y2的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)點(diǎn)C(1,2)分別作x軸、y軸的平行線,交直線y=-x+6于A、B兩點(diǎn),若反比例函數(shù)(x>0)的圖像與△ABC有公共點(diǎn),則k的取值范圍是( )
A. 2≤k≤9 B. 2≤k≤8 C. 2≤k≤5 D. 5≤k≤8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是一臺(tái)放置在水平桌面上的筆記本電腦,將其側(cè)面抽象成如圖2所示的幾何圖形,若顯示屏所在面的側(cè)邊AO與鍵盤(pán)所在面的側(cè)邊BO長(zhǎng)均為24cm,點(diǎn)P為眼睛所在位置,D為AO的中點(diǎn),連接PD,當(dāng)PD⊥AO時(shí),稱點(diǎn)P為“最佳視角點(diǎn)”,作PC⊥BC,垂足C在OB的延長(zhǎng)線上,且BC=12cm.
(1)當(dāng)PA=45cm時(shí),求PC的長(zhǎng);
(2)若∠AOC=120°時(shí),“最佳視角點(diǎn)”P(pán)在直線PC上的位置會(huì)發(fā)生什么變化?此時(shí)PC的長(zhǎng)是多少?請(qǐng)通過(guò)計(jì)算說(shuō)明.(結(jié)果精確到0.1cm,可用科學(xué)計(jì)算器,參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市為加快美麗鄉(xiāng)村建設(shè),建設(shè)秀美幸福宿州,對(duì)A、B兩類村莊進(jìn)行了全面改建.根據(jù)預(yù)算,建設(shè)一個(gè)A類美麗村莊和一個(gè)B類美麗村莊共需資金300萬(wàn)元;甲鎮(zhèn)建設(shè)了2個(gè)A類村莊和5個(gè)B類村莊共投入資金1140萬(wàn)元.
(1)建設(shè)一個(gè)A類美麗村莊和一個(gè)B類美麗村莊所需的資金分別是多少萬(wàn)元?
(2)乙鎮(zhèn)3個(gè)A類美麗村莊和6個(gè)B類村莊改建共需資金多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】體育中考前,抽樣調(diào)查了九年級(jí)學(xué)生的“1分鐘跳繩”成績(jī),并繪制成了下面的頻數(shù)分布直方圖(每小組含最小值,不含最大值)和扇形圖.
(1)補(bǔ)全頻數(shù)分布直方圖;
(2)扇形圖中m=;
(3)若“1分鐘跳繩”成績(jī)大于或等于140次為優(yōu)秀,則估計(jì)全市九年級(jí)5900名學(xué)生中“1分鐘跳繩”成績(jī)?yōu)閮?yōu)秀的大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,然后解答后面的問(wèn)題.
我們知道方程2x+3y=12有無(wú)數(shù)組解,但在實(shí)際生活中我們往往只需要求出其正整數(shù)解.例:由2x+3y=12,得,(x、y為正整數(shù))∴ 則有0<x<6.又為正整數(shù),則 為正整數(shù).
由2與3互質(zhì),可知:x為3的倍數(shù),從而x=3,代入=2.
∴2x+3y=12的正整數(shù)解為
問(wèn)題:
(1)請(qǐng)你寫(xiě)出方程2x+y=5的一組正整數(shù)解:_____;
(2)若 為自然數(shù),則滿足條件的整數(shù)x值有_____個(gè);
A、2 B、3 C、4 D、5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com