【題目】開學(xué)初,小芳和小亮去商店購買學(xué)習(xí)用品,小芳用30元錢購買鋼筆的數(shù)量是小亮用25元錢購買筆記本數(shù)量的2倍,已知每支鋼筆的價(jià)格比每本筆記本的價(jià)格少2元.
1)求每支鋼筆和每本筆記本各是多少元;
2)學(xué)校運(yùn)動會后,班主任拿出200元學(xué)校獎勵基金交給小芳,再次購買上述價(jià)格的鋼筆和筆記本共48件作為獎品,獎勵給校運(yùn)動會中表現(xiàn)突出的同學(xué),經(jīng)雙方協(xié)商,商店給出優(yōu)惠是購買商品的總金額超出50的部分給打九折,請問小芳至少要買多少支鋼筆?

【答案】1每只鋼筆3元,每本筆記本5元;(212支鋼筆.

【解析】

1)根據(jù)小芳用30元錢購買鋼筆的數(shù)量是小亮用25元錢購買筆記本數(shù)量的2倍,已知每支鋼筆的價(jià)格比每本筆記本的價(jià)鉻少2元,可以得到相應(yīng)的方程,解方程即可求得每支鋼筆和每本筆記本各是多少元;
2)根據(jù)題意可以列出相應(yīng)的不等式,從而可以得到小芳至少要買多少支鋼筆.

1)設(shè)每本筆記本的價(jià)格是x元,則每支鋼筆的價(jià)格是(x-2)元,
×2
解得x=5,
經(jīng)檢驗(yàn),x=5是原分式方程的解,
x-2=3,
即每支鋼筆和每本筆記本各是3元、5元;
2)設(shè)小芳購買鋼筆x支,則購買的筆記本為(48-x)本,
50+[3x+48-x×5-50]×0.9≤200
解得x≥11,
即小芳至少要買12支鋼筆.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABC中,CDABD,且BD : AD : CD2 : 3 : 4,

1)求證:AB=AC

2)已知SABC40cm2,如圖2,動點(diǎn)M從點(diǎn)B出發(fā)以每秒1cm的速度沿線段BA向點(diǎn)A 運(yùn)動,同時動點(diǎn)N從點(diǎn)A出發(fā)以相同速度沿線段AC向點(diǎn)C運(yùn)動,當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時整個運(yùn)動都停止. 設(shè)點(diǎn)M運(yùn)動的時間為t(秒),

①若DMN的邊與BC平行,求t的值;

②若點(diǎn)E是邊AC的中點(diǎn),問在點(diǎn)M運(yùn)動的過程中,MDE能否成為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線AB,CD被直線EF所截,如果要添加條件,使得MQ∥NP,那么下列條件中能判定MQ∥NP的是( )

A. ∠1∠2 B. ∠BMF∠DNF

C. ∠AMQ∠CNP D. ∠1∠2,∠BMF∠DNF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A和點(diǎn)B,其中點(diǎn)A的坐標(biāo)為(﹣2,0),拋物線的對稱軸x=1與拋物線交于點(diǎn)D,與直線BC交于點(diǎn)E.

(1)求拋物線的解析式;
(2)若直線BC的函數(shù)解析式為y’=kx+b,求當(dāng)滿足y<y’時,自變量x的取值范圍.
(3)平行于DE的一條動直線l與直線BC相交于點(diǎn)P,與拋物線相交于點(diǎn)Q,若以D、E、P、Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點(diǎn)C,點(diǎn)A( ,1)在反比例函數(shù)y= (x≠0)的圖象上.

(1)求反比例函數(shù)y= (x≠0)的解析式和點(diǎn)B的坐標(biāo);
(2)若將△BOA繞點(diǎn)B按逆時針方向旋轉(zhuǎn)60°得到△BDE(點(diǎn)O與點(diǎn)D是對應(yīng)點(diǎn)),補(bǔ)全圖形,直接寫出點(diǎn)E的坐標(biāo),并判斷點(diǎn)E是否在該反比例函數(shù)的圖象上,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn) 為第一象限內(nèi)一點(diǎn),點(diǎn)軸正半軸上,且
1)求點(diǎn)的坐標(biāo);
2)動點(diǎn)以每秒2個單位長度的速度,從點(diǎn)出發(fā),沿軸正半軸勻速運(yùn)動,設(shè)點(diǎn)的運(yùn)動時間為秒,的面積為,請用含有的式子表示,并直接寫出的取值范圍;
3)如圖2,在(2)的條件下,點(diǎn)坐標(biāo)為,連接,過點(diǎn)軸的垂線交于點(diǎn),過點(diǎn) 軸的平行線,在點(diǎn)的運(yùn)動過程中,直線上是否存在一點(diǎn),使是以為腰的等腰直角三角形?若存在,求出點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCCED均為等邊三角形,且BC,D三點(diǎn)共線.線段BEAD相交于點(diǎn)OAFBE于點(diǎn)F.若OF=1,則AF的長為( 。

A. 1 B. C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是兩個全等的三角形,.現(xiàn)將按如圖所示的方式疊放在一起,保持不動,運(yùn)動,且滿足:點(diǎn)E在邊BC上運(yùn)動(不與點(diǎn)B,C重合),且邊DE始終經(jīng)過點(diǎn)A,EFAC交于點(diǎn)M .

(1)求證:∠BAE=MEC;

(2)當(dāng)EBC中點(diǎn)時,請求出MEMF的值;

(3)在的運(yùn)動過程中,能否構(gòu)成等腰三角形?若能,請直接寫出所有符合條件的BE的長;若不能,則請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場二樓擺出一臺游戲裝置如圖所示,小球從最上方入口處投入,每次遇到黑色障礙物,等可能地向左或向右邊落下.

(1)若樂樂投入一個小球,則小球落入B區(qū)域的概率為
(2)若樂樂先后投兩個小球,求兩個小球同時落在A區(qū)域的概率.

查看答案和解析>>

同步練習(xí)冊答案