【題目】現(xiàn)種植A、B、C三種樹苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一種樹苗,且每名工人每天可植A種樹苗8棵;或植B種樹苗6棵,或植C種樹苗5棵.經(jīng)過統(tǒng)計,在整個過程中,每棵樹苗的種植成本如圖所示.
設(shè)種植A種樹苗的工人為x名,種植B種樹苗的工人為y名.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若種植的總成本為5600元,從植樹工人中隨機采訪一名工人,求采訪到種植C種樹苗工人的概率.
【答案】(1)y=﹣3x+80;(2).
【解析】
(1)先求出種植C種樹苗的人數(shù),根據(jù)現(xiàn)種植A、B、C三種樹苗一共480棵,可以列出等量關(guān)系,解出y與x之間的關(guān)系;
(2)求出種植C種樹苗工人的人數(shù),然后用種植C種樹苗工人的人數(shù)÷總?cè)藬?shù)即可求出概率.
解:(1)設(shè)種植A種樹苗的工人為x名,種植B種樹苗的工人為y名,則種植C種樹苗的人數(shù)為(80﹣x﹣y)人,
根據(jù)題意,得:8x+6y+5(80﹣x﹣y)=480,
整理,得:y=﹣3x+80
(2)5600=15×8x+12×6y+8×5(80﹣x﹣y)=80x+32y+3200,把y=﹣3x+80帶入,得:5600=﹣16x+5760,
解得x=10,y=﹣3×10+80=50,
即種植A種樹苗的工人為10名,種植B種樹苗的工人為50名,種植C種樹苗的工人為:80﹣10﹣50=20名.
采訪到種植C種樹苗工人的概率為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列圖形都是由同樣大小的菱形按照一定規(guī)律組成的,請根據(jù)排列規(guī)律完成下列問題:
(1)填寫下表:
圖形序號 | 菱形個數(shù)個 |
| 3 |
| 7 |
| ______ |
| ______ |
|
|
(2)根據(jù)表中規(guī)律猜想,圖n中菱形的個數(shù)用含n的式子表示,不用說理;
(3)是否存在一個圖形恰好由91個菱形組成?若存在,求出圖形的序號;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們可以用表示為自變量的函數(shù),如一次函數(shù),可表示,,.
(1)已知二次函數(shù);
①求證:不論為何值,此函數(shù)圖像與軸總有兩個交點;
②若,是否存在實數(shù),使得當(dāng)時,函數(shù)的最小值為,若存在,求出的值,若不存在,請說明理由;
(2)已知函數(shù),,若實數(shù)、使得,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,已知拋物線(a<0)與x軸交于A、B兩點(點A在點B左側(cè)),與y軸負半軸交于點C,頂點為D,已知:S四邊形ACBD=1:4.
(1)求點D的坐標(用僅含c的代數(shù)式表示);
(2)若tan∠ACB=,求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與坐標軸分別交于A,B,C,點D在x軸上,AC=CD,過點D作DE⊥x軸交拋物線于點E,點P,Q分別是線段CO,CD上的動點,且CP=QD.記△APC的面積為S1,△PCQ的面積為S2,△QED的面積為S3,
(1)若S1+S3=4S2 ,求Q點坐標;
(2)連結(jié)AQ,求AP+AQ的最小值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形△ABC中,∠BAC=120°,AB=3.
(1)求BC的長.
(2)如圖,點D在CA的延長線上,DE⊥AB于E,DF⊥BC于F,連EF.求EF的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】北京第一條地鐵線路于1971年1月15日正式開通運營.截至2017年1月,北京地鐵共“金山銀山,不如綠水青山”.某市不斷推進“森林城市”建設(shè),今春種植四類樹苗,園林部門從種植的這批樹苗中隨機抽取了4000棵,將各類樹苗的種植棵數(shù)繪制成扇形統(tǒng)計圖,將各類樹苗的成活棵數(shù)繪制成條形統(tǒng)計圖,經(jīng)統(tǒng)計松樹和楊樹的成活率較高,且楊樹的成活率為97%,根據(jù)圖表中的信息解答下列問題:
(1)扇形統(tǒng)計圖中松樹所對的圓心角為 度,并補全條形統(tǒng)計圖.
(2)該市今年共種樹16萬棵,成活了約多少棵?
(3)園林部門決定明年從這四類樹苗中選兩類種植,請用列表法或樹狀圖求恰好選到成活率較高的兩類樹苗的概率.(松樹、楊樹、榆樹、柳樹分別用A,B,C,D表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=8,O是AD的中點,以O為圓心在AD的下方作半徑為3的半圓O,交AD于E、F.
思考:連接BD,交半圓O于G、H,求GH的長;
探究:將線段AF連帶半圓O繞點A順時針旋轉(zhuǎn),得到半圓O′,設(shè)其直徑為E'F′,旋轉(zhuǎn)角為α(0<α<180°).
(1)設(shè)F′到AD的距離為m,當(dāng)m>時,求α的取值范圍;
(2)若半圓O′與線段AB、BC相切時,設(shè)切點為R,求的長.
(sin49°=,cos41°=,tan37°=,結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,(1)某學(xué)!爸腔鄯綀@”數(shù)學(xué)社團遇到這樣一個題目:如圖1,在△ABC中,點O在線段BC上,∠BAO=20°,∠OAC=80°,AO=,BO:CO=1:3,求AB的長.經(jīng)過社團成員討論發(fā)現(xiàn),過點B作BD∥AC,交AO的延長線于點D,通過構(gòu)造△ABD就可以解決問題(如圖2),請回答:∠ADB= °,AB= .
(2)請參考以上思路解決問題:如圖3,在四邊形ABCD中,對角線AC、BD相交于點O,AC⊥AD,AO=6,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com