【題目】在△ABC中,AB=AC=13cm,BC=10cm,M、N分別是AB、AC的中點,D、E在BC上,且DE=5cm,連結DN、ME交于H,則△HDE的面積為_____.
科目:初中數(shù)學 來源: 題型:
【題目】在半徑為25cm的⊙O中,弦AB=40cm,則弦AB所對的弧的中點到AB的距離是( 。
A.10cmB.15cmC.40cmD.10cm或40cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過點C(0,3),與x軸分別交于點A,點B(3,0).點P是直線BC上方的拋物線上一動點.
(1)求二次函數(shù)y=ax2+2x+c的表達式;
(2)連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請求出此時點P的坐標;
(3)當點P運動到什么位置時,四邊形ACPB的面積最大?求出此時P點的坐標和四邊形ACPB的最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果三角形的兩個內(nèi)角α與β滿足2α+β=90°,那么我們稱這樣的三角形為“準互余三角形”.
(1)若△ABC是“準互余三角形”,∠C>90°,∠A=60°,則∠B= °;
(2)如圖①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明△ABD是“準互余三角形”.試問在邊BC上是否存在點E(異于點D),使得△ABE也是“準互余三角形”?若存在,請求出BE的長;若不存在,請說明理由.
(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“準互余三角形”,求對角線AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在3×3正方形方格中,有3個小正方形涂成了黑色,所形成的圖案如圖所示,圖中每塊小正方形除顏色外完全相同.
(1)一個小球在這個正方形方格上自由滾動,那么小球停在黑色小正方形的概率是多少?
(2)現(xiàn)將方格內(nèi)空白的小正方形(A、B、C、D、E、F)中任取2個涂黑,得到新圖案,請用列表或畫樹狀圖的方法求新圖案是中心對稱圖形的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+bx+c與x軸交于A、D兩點,與y軸交于點B,四邊形OBCD是矩形,點A的坐標為(1,0),點B的坐標為(0,4),已知點E(m,0)是線段DO上的動點,過點E作PE⊥x軸交拋物線于點P,交BC于點G,交BD于點H.
(1)求該拋物線的解析式;
(2)當點P在直線BC上方時,請用含m的代數(shù)式表示PG的長度;
(3)在(2)的條件下,是否存在這樣的點P,使得以P、B、G為頂點的三角形與△DEH相似?若存在,求出此時m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系xOy中,橫坐標為a的點A在反比例函數(shù)y1=(x>0)的圖象上,點B與點A關于原點O對稱,一次函數(shù)y2=mx+n的圖象經(jīng)過點B.
(1)設a=2,點C(4,2)在函數(shù)y1,y2的圖象上.分別求函數(shù)y1,y2的表達式.
(2)如圖,設函數(shù)y1,y2的圖象相交于點C,點C的橫坐標為3a,△ABC的面積為16,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=mx2-16mx+48m(m>0)與x軸交于A、B兩點(點B在點A左側),與y軸交于點C,點D是拋物線上的一個動點,且位于第四象限,連接OD、BD、AC、AD,延長AD交y軸于點E.
(1)若△OAC為等腰直角三角形,求m的值.
(2)若對任意m>0,C、E兩點總關于原點對稱,求點D的坐標(用含m的式子表示).
(3)當點D運動到某一位置時,恰好使得∠ODB=∠OAD,且點D為線段AE的中點,此時對于該拋物線上任意一點P(x0,y0)總有n≥-4my02-12y0-50成立,求實數(shù)n的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c中,自變量x與函數(shù)y之間的部分對應值如下表:
在該函數(shù)的圖象上有A(x1,y1)和B(x2,y2)兩點,且-1<x1<0,3<x2<4,y1與y2的大小關系正確的是( )
A.y1≥y2B.y1>y2C.y1≤y2D.y1<y2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com