【題目】如圖1,二次函數(shù)y=ax2﹣3ax+c的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)c直線y=﹣x+4經(jīng)過點(diǎn)B、C.
(1)求拋物線的表達(dá)式;
(2)過點(diǎn)A的直線y=kx+k交拋物線于點(diǎn)M,交直線BC于點(diǎn)N,連接AC,當(dāng)直線y=kx+k平分△ABC的面積,求點(diǎn)M的坐標(biāo);
(3)如圖2,把拋物線位于x軸上方的圖象沿x軸翻折,當(dāng)直線y=kx+k與翻折后的整個(gè)圖象只有三個(gè)交點(diǎn)時(shí),求k的取值范圍.
【答案】(1)y=﹣x2+3x+4;(2)M(,);(3)k的取值范圍是﹣5<k<0.
【解析】
(1)由直線y=-x+4知:點(diǎn)B、C的坐標(biāo)分別為(4,0)、(0,4),則二次函數(shù)表達(dá)式為:y=ax2-3ax+4,將點(diǎn)A的坐標(biāo)代入上式,即可求解;
(2)求出A的坐標(biāo),過點(diǎn)N作NG⊥AB于G,則根據(jù)直線y=kx+k平分△ABC的面積有 ,即可求出N的坐標(biāo),從而求出直線AM的解析式,再與拋物線解析式聯(lián)立方程即可求M的坐標(biāo);
(3)根據(jù)翻折的現(xiàn)在知翻折部分的函數(shù)表達(dá)式是 ,根據(jù)翻折的部分圖象只有一個(gè)交點(diǎn),則聯(lián)立方程后判別式為零即可.
(1)由直線y=﹣x+4知,點(diǎn)B、C的坐標(biāo)分別為(4,0)、(0,4),
把點(diǎn)B、C的坐標(biāo)分別為(4,0)、(0,4),
代入y=ax2﹣3ax+c,得解得
∴拋物線的表達(dá)式為:y=﹣x2+3x+4
(2)由y=﹣x2+3x+4,求得A(﹣1,0)
過點(diǎn)N作NG⊥AB于G,
∵直線y=kx+k平分△ABC的面積,
∴,
∴當(dāng)x=2時(shí),2=﹣x+4,∴x=2
∴N(2,2)
把N(2,2)代入y=kx+k,得,
∴直線AM的解析式為,
由解得
∴
(3)翻折部分的函數(shù)表達(dá)式是
當(dāng)直線y=kx+k與翻折后的圖象只有一個(gè)交點(diǎn)時(shí),
由,得x2﹣3x﹣4=kx+k,
整理,得x2﹣(k+3)x﹣(k+4)=0
△=[﹣(k+3)]2﹣4×[﹣(k+4)]=k2+10k+25=0
解得k1=k2=﹣5
∴當(dāng)直線y=kx+k與翻折后的整個(gè)圖象只有三個(gè)交點(diǎn)時(shí),k的取值范圍是﹣5<k<0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為8的等邊△BCD中,DF⊥BC于點(diǎn)F,點(diǎn)A為射線DF上一動(dòng)點(diǎn),以B為旋轉(zhuǎn)中心,把BA順時(shí)針方向旋轉(zhuǎn)60°至BE,連接EC.
(1)當(dāng)點(diǎn)A在線段DF的延長(zhǎng)線上時(shí),求證:DA=CE;
(2)當(dāng)∠DEC=45°時(shí),連接AC,求四邊形ABDC的面積;
(3)連接EF,當(dāng)EF取得最小值時(shí),線段AB的長(zhǎng)是多少?(只寫答案,不要過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,點(diǎn)D是等邊三角形ABC的外接圓上的一點(diǎn),過點(diǎn)D作圓的切線,交BC的延長(zhǎng)線于F.
(1)用尺規(guī)作圖,作出等邊三角形ABC外接圓的圓心O;
(2)若⊙O的半徑為2,∠F=45°,求CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校數(shù)學(xué)興趣小組利用自制的直角三角形硬紙板DEF來測(cè)量操場(chǎng)旗桿AB的高度,他們通過調(diào)整測(cè)量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點(diǎn)A在同一直線上,已知DE=1米,EF=0.5米,測(cè)點(diǎn)D到地面的距離DG=3米,到旗桿的水平距離DC=40米,求旗桿的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,點(diǎn)是邊上的任一點(diǎn),連接并將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段,在邊上取點(diǎn)使,連接.
(1)求證:四邊形是平行四邊形;
(2)線段與交于點(diǎn),連接,若,則與存在怎樣的數(shù)量關(guān)系?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△ABC中,∠C=90°,BC=1,AC=4,把邊長(zhǎng)分別為,,,…,的n個(gè)正方形依次放入△ABC中,則第n個(gè)正方形的邊長(zhǎng)_______________(用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,以下結(jié)論:①abc>0;②4ac<b2;③2a+b>0;④其頂點(diǎn)坐標(biāo)為(,﹣2);⑤當(dāng)x<時(shí),y隨x的增大而減小;⑥a+b+c>0正確的有( 。
A. 3個(gè) B. 4個(gè) C. 5個(gè) D. 6個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)
(1)寫出函數(shù)圖象的開口方向、頂點(diǎn)坐標(biāo)和對(duì)稱軸.
(2)判斷點(diǎn)是否在該函數(shù)圖象上,并說明理由.
(3)求出以該拋物線與兩坐標(biāo)軸的交點(diǎn)為頂點(diǎn)的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索與證明:(1)如圖1,直線m經(jīng)過正三角形ABC的頂點(diǎn)A,在直線m上取兩點(diǎn) D,E,使得∠ADB=60°,∠AEC=60°.通過觀察或測(cè)量,猜想線段BD,CE與DE之間滿足的數(shù)量關(guān)系,并予以證明;
(2)將(1)中的直線m繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)一個(gè)角度到如圖2的位置,并使∠ADB=120°,∠AEC=120°.通過觀察或測(cè)量,請(qǐng)直接寫出線段BD,CE與DE之間滿足的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com