【題目】如圖,拋物線y=ax2+ x+c(a≠0)與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知點A的坐標為(﹣1,0),點C的坐標為(0,2).
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;
(3)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.
【答案】
(1)
解:由題意 ,
解得 ,
∴二次函數(shù)的解析式為y=﹣ x2+ x+2
(2)
解:存在.如圖1中,
∵C(0,2),D( ,0),
∴CD= = ,
當CP=CD時,P1( ,4),
當DP=DC時,P2( , ),P3( ,﹣ ).
綜上所述,滿足條件的點P坐標為( ,4)或( , )或( ,﹣
(3)
解:如圖2中,作CM⊥EF于M,
∵B(4,0),C(0,2),
∴直線BC的解析式為y=﹣ ,設E(a,﹣ +2),F(xiàn)(a,﹣ a2+ a+2),
∴EF=﹣ a2+ a+2﹣(﹣ +2)=﹣ a2+2a,(0≤a≤4),
∵S四邊形CDBF=S△BCD+S△CEF+S△BEF= BDOC+ EFCM+ EFBN
= + a(﹣ a2+2a)+ (4﹣a)(﹣ a2+2a)
=﹣a2+4a+
=﹣(a﹣2)2+ ,
∴a=2時,四邊形CDBF的面積最大,最大值為 ,
∴E(2,1)
【解析】(1)利用待定系數(shù)法轉化為解方程組即可.(2)如圖1中,分兩種情形討論①當CP=CD時,②當DP=DC時,分別求出點P坐標即可.(3)如圖2中,作CM⊥EF于M,設E(a,﹣ +2),F(xiàn)(a,﹣ a2+ a+2),則EF=﹣ a2+ a+2﹣(﹣ +2)=﹣ a2+2a,(0≤a≤4),根據(jù)S四邊形CDBF=S△BCD+S△CEF+S△BEF= BDOC+ EFCM+ EFBN,構建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題.
【考點精析】掌握二次函數(shù)的圖象和二次函數(shù)的性質(zhì)是解答本題的根本,需要知道二次函數(shù)圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。
科目:初中數(shù)學 來源: 題型:
【題目】張大伯從報社以每份0.4元的價格購進了份報紙,以每份0.5元的價格售出了份報紙,剩余的以每份0.2元的價格退回報社,則張大伯賣報收入()元
A. 0.7b-0.6a B. 0.5b-0.2a C. 0.7b-0.6a D. 0.3b-0.2a
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線 與x軸的負半軸交于點A,與y軸交于點B,連結AB.點C 在拋物線上,直線AC與y軸交于點D.
(1)求c的值及直線AC的函數(shù)表達式;
(2)點P在x軸的正半軸上,點Q在y軸正半軸上,連結PQ與直線AC交于點M,連結MO并延長交AB于點N,若M為PQ的中點.
①求證:△APM∽△AON;
②設點M的橫坐標為m , 求AN的長(用含m的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題12分)如圖1,在平面直角坐標系中,四邊形OABC各頂點的坐標分別O(0,0),A(3, ),B(9,5 ),C(14,0).動點P與Q同時從O點出發(fā),運動時間為t秒,點P沿OC方向以1單位長度/秒的速度向點C運動,點Q沿折線OAABBC運動,在OA,AB,BC上運動的速度分別為3, , (單位長度/秒)﹒當P,Q中的一點到達C點時,兩點同時停止運動.
(1)求AB所在直線的函數(shù)表達式.
(2)如圖2,當點Q在AB上運動時,求△CPQ的面積S關于t的函數(shù)表達式及S的最大值.
(3)在P,Q的運動過程中,若線段PQ的垂直平分線經(jīng)過四邊形OABC的頂點,求相應的t值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=3,點E,F,G,H分別在矩形ABCD各邊上,且AE=CG,BF=DH,則四邊形EFGH周長的最小值為( )
A. 7 B. 10 C. 14 D. 15
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在面積為12的平行四邊形ABCD中,過點A作直線BC的垂線交BC于點E,過點A作直線CD的垂線交CD于點F,若,則的值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市甲、乙兩個汽車銷售公司,去年一至十月份每月銷售同種品牌汽車的情況如圖所示:
請你根據(jù)上圖填寫下表:
銷售公司 | 平均數(shù) | 方差 | 中位數(shù) | 眾數(shù) |
甲 | 9 | |||
乙 | 9 | 8 |
請你從以下兩個不同的方面對甲、乙兩個汽車銷售公司去年一至十月份的銷售情況進行分析:
從平均數(shù)和方差結合看;
從折線圖上甲、乙兩個汽車銷售公司銷售數(shù)量的趨勢看分析哪個汽車銷售公司較有潛力.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AD是∠BAC的平分線,交BC于點M,交⊙O于點D.則圖中相似三角形共有( )
A.2對
B.4對
C.6對
D.8對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)y= (x>0)的圖象經(jīng)過矩形OABC對角線的交點M,分別與AB、BC相交于點D、E.若四邊形ODBE的面積為6,則k的值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com