【題目】如圖,為了測量某建筑物CD的高度,先在地面上用測角儀自A處測得建筑物頂部的仰角是30°,然后在水平地面上向建筑物前進了40m,此時自B處測得建筑物頂部的仰角是45°.已知測角儀的高度是1.5m,請你計算出該建筑物的高度.(結(jié)果精確到1m)(參考數(shù)據(jù):1.7321.414)

【答案】該建筑物的高度約為56m

【解析】

RtCBE中,由于∠CBE45°,所以BECE,AE40x,在RtACE中,利用30°的銳角三角函數(shù)求出x,加上測角儀的高度就是CD

設(shè)CE的長為xm

RtCBE中,∵∠CBE45°

∴∠BCD45°,

CEBExm,

AEAB+BE40+x(m)

RtACE中,∵∠CAE30°

tan30°

,

解得,x20+20≈20×1.732+2054.64(m)

CDCE+ED54.65+1.556.15≈56(m)

答:該建筑物的高度約為56m

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,過點B做⊙O的切線BC,點D為⊙O上一點,且CDCB,連結(jié)DO并延長交CB的延長線于點E

1)求證:CD是⊙O的切線;

2)連接AC,若BE4,DE8,求線段AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,函數(shù)y1=ax+ba、b為常數(shù),且ab≠0)的圖象如圖所示,y2=bx+a,設(shè)y=y1·y2.

1)當b=-2a時,

①若點(1,4)在函數(shù)y的圖象上,求函數(shù)y的表達式;

②若點(x1,p)和(x2,q)在函數(shù)y的圖象上,且,比較p,q的大小;

2)若函數(shù)y的圖象與x軸交于(m,0)和(n,0)兩點,求證:m=.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于的一元二次方程.

1)求證:方程總有兩個實數(shù)根;

2)若方程有一根小于1,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B90°,AB12mm,BC24mm,動點P從點A開始沿邊ABB2mm/s的速度移動(不與點B重合),動點Q從點B開始沿邊BCC4mm/s的速度移動(不與點C重合).如果PQ分別從A、B同時出發(fā),設(shè)運動的時間為ts,四邊形APQC的面積為ymm2

1yt之間的函數(shù)關(guān)系式;

2)求自變量t的取值范圍;

3)四邊形APQC的面積能否等于172mm2.若能,求出運動的時間;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E在正方形ABCD的對角線AC上,且EC2AE,直角三角形FEG的兩直角邊EF、EG分別交BC、DC于點M、N.若正方形ABCD邊長為1.則重疊部分四邊形EMCN的面積為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖ABC三個頂點的坐標分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度.

(1)畫出ABC向上平移6個單位得到的A1B1C1

(2)以點C為位似中心,在網(wǎng)格中畫出A2B2C2,使A2B2C2ABC位似,且A2B2C2ABC的位似比為2:1,并直接寫出點A2的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:一組自然數(shù)1,2,3…k,去掉其中一個數(shù)后剩下的數(shù)的平均數(shù)為16,則去掉的數(shù)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程(x+1)(x3)+m0m0)的兩根為ab,且ab,用“<”連接﹣1、3、a、b的大小關(guān)系為_____

查看答案和解析>>

同步練習(xí)冊答案