【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)都在小方格的格點(diǎn)上.
(1)點(diǎn)A的坐標(biāo)是 ;點(diǎn)C的坐標(biāo)是 ;
(2)以原點(diǎn)O為位似中心,將△ABC縮小,使變換后得到的△A1B1C1與△ABC對(duì)應(yīng)邊的比為1:2,請(qǐng)?jiān)诰W(wǎng)格中畫出△A1B1C1;
(3)△A1B1C1的面積為 .
【答案】(1)(2,8),(6,6);(2)見解析;(3).
【解析】
(1)直接利用已知點(diǎn)位置即可得出各點(diǎn)的坐標(biāo);
(2)利用位似圖形的性質(zhì)得出對(duì)應(yīng)點(diǎn)位置即可畫出△A1B1C1;
(3)根據(jù)三角形面積求法即可得出答案.
解:(1)由平面直角坐標(biāo)系中,△ABC的位置得:
點(diǎn)A的坐標(biāo)是:(2,8);點(diǎn)C的坐標(biāo)是:(6,6);
(2)如圖所示:△A1B1C1,即為所求;
(3)∵A1(1,4),B1(0,3),C1(3,3)
∴△A1B1C1的面積為: ×3×1=.
故答案為:(1)(2,8),(6,6);(2)見解析;(3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,把和按圖1擺放,點(diǎn)C與E點(diǎn)重合,點(diǎn)B、C、E、F始終在同一條直線上,,,,,,如圖2,從圖1的位置出發(fā),以每秒1個(gè)單位的速度沿CB方向勻速移動(dòng),同時(shí),點(diǎn)P從A出發(fā),沿AB以每秒1個(gè)單位向點(diǎn)B勻速移動(dòng),AC與的直角邊相交于Q,當(dāng)P到達(dá)終點(diǎn)B時(shí),同時(shí)停止運(yùn)動(dòng)連接PQ,設(shè)移動(dòng)的時(shí)間為解答下列問題:
在平移的過程中,當(dāng)點(diǎn)D在的AC邊上時(shí),求AB和t的值;
在移動(dòng)的過程中,是否存在為等腰三角形?若存在,求出t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,小凱和同學(xué)帶著皮尺,去測(cè)量楊大爺家露臺(tái)遮陽(yáng)蓬的寬度,如圖,由于無(wú)法直接測(cè)量,小凱便在樓前面的地面上選擇了一條直線EF,通過在直線EF上選點(diǎn)觀測(cè),發(fā)現(xiàn)當(dāng)他位于N點(diǎn)時(shí),他的視線從M點(diǎn)通過露臺(tái)D點(diǎn)正好落在遮陽(yáng)蓬A點(diǎn)處:當(dāng)他位于Q點(diǎn)時(shí),視線從P點(diǎn)通過露臺(tái)D點(diǎn)正好落在遮陽(yáng)蓬B點(diǎn)處,這樣觀測(cè)到兩個(gè)點(diǎn)A,B間的距離即為遮陽(yáng)蓬的寬.已知AB∥CD∥EF,點(diǎn)C在AG上,AG、DE、PQ、MN均為垂直于EF,MN=PQ,露臺(tái)的寬CD=GE,測(cè)得GE=5米,EN=13.2米,QN=6.2,請(qǐng)你根據(jù)以上信息,求出遮陽(yáng)蓬的寬AB是多少米?(結(jié)果精確到0.01米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對(duì)稱軸是直線x=1.
①b2>4ac;
②4a﹣2b+c<0;
③不等式ax2+bx+c>0的解集是x≥3.5;
④若(﹣2,y1),(5,y2)是拋物線上的兩點(diǎn),則y1<y2.
上述4個(gè)判斷中,正確的是( 。
A.①② B.①④ C.①③④ D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠MON=30°,B為OM上一點(diǎn),BA⊥ON于點(diǎn)A,四邊形ABCD為正方形,P為射線BM上一動(dòng)點(diǎn),連結(jié)CP,將CP繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)90°得CE,連接BE,若AB=2,則BE的最小值為( )
A. +1B. 2﹣1C. 3D. 4﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=mx+n(m≠0)的圖象與反比例函數(shù)y=(k≠0)的圖象交于第一、三象限內(nèi)的A,B兩點(diǎn),與y軸交于點(diǎn)C,過點(diǎn)B作BM⊥x軸,垂足為點(diǎn)M,BM=OM=2,點(diǎn)A的縱坐標(biāo)為4.
(1)求該反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)直線AB交x軸于點(diǎn)D,過點(diǎn)D作直線l⊥x軸,如果直線l上存在點(diǎn)P,坐標(biāo)平面內(nèi)存在點(diǎn)Q.使四邊形OPAQ是矩形,求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=ax2﹣3(a+1)x+2a+3(a≠0)與直線y=x﹣1交于點(diǎn)A和點(diǎn)B(點(diǎn)A在點(diǎn)B的左側(cè)),AB=5.
(1)求證:該拋物線必過一個(gè)定點(diǎn);
(2)求該拋物線的解析式;
(3)設(shè)直線x=m與該拋物線交于點(diǎn)E(x1,y1),與直線AB交于點(diǎn)F(x2,y2),當(dāng)滿足y1+y2>0且y1y2<0時(shí),求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△ABC的邊長(zhǎng)為8,以AB為直徑的圓交BC于點(diǎn)F.以C為圓心,CF長(zhǎng)為半徑作圖,D是⊙C上一動(dòng)點(diǎn),E為BD的中點(diǎn),當(dāng)AE最大時(shí),BD的長(zhǎng)為( 。
A. B. C. D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為4cm,以正方形的一邊BC為直徑在正方形ABCD內(nèi)作半圓,再過點(diǎn)A作半圓的切線,與半圓切于點(diǎn)F,與CD交于點(diǎn)E,則S梯形ABCE=_____cm2.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com