精英家教網 > 初中數學 > 題目詳情

【題目】如圖,一次函數yx2的圖象與x軸交于點A,與y軸交于點B,點D的坐標為(﹣10),二次函數yax2+bx+ca≠0)的圖象經過A,BD三點.

1)求二次函數的解析式;

2)如圖1,已知點G1,m)在拋物線上,作射線AG,點H為線段AB上一點,過點HHEy軸于點E,過點HHFAG于點F,過點HHMy軸交AG于點P,交拋物線于點M,當HEHF的值最大時,求HM的長;

3)在(2)的條件下,連接BM,若點N為拋物線上一點,且滿足∠BMN=∠BAO,求點N的坐標.

【答案】1yx2x2;(22;(3(1,﹣3)(,)

【解析】

1)二次函數經過D(﹣1,0),B4,0),可以假設二次函數的解析式為yax+1)(x4),把A0,﹣2)代入得到a即可解決問題.

2)如圖1中,設Hx0,x02),且(0≤x0≤4),構建二次函數,利用二次函數的性質即可解決問題.

3)如圖2中,過點BBTMNT.由題意BM,BT1MT2,設Tm,n),利用兩點間距離公式構建方程組求出m,n,再求出直線MN的解析式,構建方程組確定解得N的坐標即可.

解:(1)在yx2中,當x0時,y=﹣2,當y0時,x4,

A40),B0,﹣2),

∵二次函數經過D(﹣10),B4,0),

∴可以假設二次函數的解析式為yax+1)(x4),

A0,﹣2)代入得到a,

∴二次函數的解析式為yx2x2

2)如圖1中,設Hx0,x02),且(0≤x0≤4),

HEy軸于E,

HEx0

G1,m)在拋物線上,

G1,﹣3),

A4,0),

∴直線AG的解析式為yx4,

HMy軸交AGP

Px0,x04),則PH=(x02)﹣(x04)=﹣x0+2,

由直線AG都是解析式yx4,HMy軸交AGP,可得∠HPF45°,

HFAGF

HF(﹣x0+2),

HEHF(﹣x0+2x0=﹣x02+x0=﹣x022+,

∵﹣0,0≤x0≤4

∴當x02時,HEHF的值最大,此時H2,﹣1),M2,﹣3),

HM=﹣1﹣(﹣3)=2

3)如圖2中,過點BBTMNT

∵∠BMN=∠BAO,

tanBMNtanBAO

,

又∵B0,﹣2),M2,﹣3),可得BM,BT1MT2,

Tmn),則解得

T0,﹣3)或(,﹣),

M2,﹣3),

∴直線MN的解析式為y=﹣3y=﹣x,

聯立得,

分別解方程組可得,舍棄第二,第四組解,

∴滿足條件的點N的坐標為(1,﹣3)或(﹣,).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】問題探究

1)如圖1,△ABC和△DEC均為等腰直角三角形,∠ACB=∠DCE90°,點B,DE在同一直線上,連接AD,BD

①請?zhí)骄?/span>ADBD之間的位置關系:________;

②若ACBC,DCCE,則線段AD的長為________

拓展延伸

2)如圖2,△ABC和△DEC均為直角三角形,∠ACB=∠DCE90°,AC,BC,CD,CE1.將△DCE繞點C在平面內順時針旋轉,設旋轉角∠BCDα0°≤α360°),作直線BD,連接AD,當點B,DE在同一直線上時,畫出圖形,并求線段AD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點DE在⊙O上,∠A=2BDE,點CAB的延長線上,∠C=ABD

1)求證:CE是⊙O的切線;

2)若⊙O的半徑長為5BF=2,求EF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了豐富校園文化生活,提高學生的綜合素質,促進中學生全面發(fā)展,學校開展了多種社團活動.小明喜歡的社團有:合唱社團、足球社團、書法社團、科技社團(分別用字母A,B,CD依次表示這四個社團),并把這四個字母分別寫在四張完全相同的不透明的卡片的正面上,然后將這四張卡片背面朝上洗勻后放在桌面上.

1)小明從中隨機抽取一張卡片是足球社團B的概率是   

2)小明先從中隨機抽取一張卡片,記錄下卡片上的字母后不放回,再從剩余的卡片中隨機抽取一張卡片,記錄下卡片上的字母.請你用列表法或畫樹狀圖法求出小明兩次抽取的卡片中有一張是科技社團D的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖:已知銳角∠AOC,依次按照以下順序操作畫圖:

1)在射線OA上取一點B,以點O為圓心,OB長為半徑作,交射線OC于點D,連接BD;

2)分別以點B,D為圓心,BD長為半徑作弧,交于點MN;

3)連接ON,MN

根據以上作圖過程及所作圖形可知下列結論:①OC平分∠AON;②MNBD;③MN3BD;④若∠AOC30°,則MNON.其中正確結論的序號是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】將正比例函數ykxk是常數,k≠0)的圖象,沿著y軸的一個方向平移|k|個單位后與x軸、y軸圍成一個三角形,我們稱這個三角形為正比例函數ykx的坐標軸三角形,如果一個正比例函數的圖象經過第一、三象限,且它的坐標軸三角形的面積為5,那么這個正比例函數的解析式是__

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在一個不透明的布袋里裝有4個標有1,23,4的小球,它們的形狀、大小、質地完全相同,小李從布袋里隨機取出一個小球,記下數字為x,小張在剩下的3個小球中隨機取出一個小球,記下數字為y,這樣確定了點Q的坐標(xy).

1)畫樹狀圖或列表,寫出點Q所有可能的坐標;

2)求點Qxy)在函數y=﹣x+5圖象上的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】將圖中的A型、B型、C型矩形紙片分別放在3個盒子中,盒子的形狀、大小、質地都相同,再將這3個盒子裝入一只不透明的袋子中.

(1)攪勻后從中摸出1個盒子,求摸出的盒子中是型矩形紙片的概率;

(2)攪勻后先從中摸出1個盒子(不放回),再從余下的兩個盒子中摸出一個盒子,求2次摸出的盒子的紙片能拼成一個新矩形的概率(不重疊無縫隙拼接).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】襄陽市精準扶貧工作已進入攻堅階段.貧困戶張大爺在某單位的幫扶下,把一片坡地改造后種植了優(yōu)質水果藍莓,今年正式上市銷售.在銷售的30天中,第一天賣出20千克,為了擴大銷量,采取了降價措施,以后每天比前一天多賣出4千克.第x天的售價為y/千克,y關于x的函數解析式為 且第12天的售價為32/千克,第26天的售價為25/千克.已知種植銷售藍莓的成木是18/千克,每天的利潤是W元(利潤=銷售收入﹣成本).

(1)m=   ,n=   ;

(2)求銷售藍莓第幾天時,當天的利潤最大?最大利潤是多少?

(3)在銷售藍莓的30天中,當天利潤不低于870元的共有多少天?

查看答案和解析>>

同步練習冊答案