【題目】已知關(guān)于x的一元二次方程有兩個不相等的實(shí)數(shù)根

(1)求k的取值范圍;

(2)若k取小于1的整數(shù),且此方程的解為整數(shù),則求出此方程的兩個整數(shù)根;

(3)在(2)的條件下,二次函數(shù)x軸交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)的左側(cè)),D點(diǎn)在此拋物線的對稱軸上,若∠DAB=60,直接寫出D點(diǎn)的坐標(biāo)

【答案】1;(2,;(3),

【解析】分析:(1)根據(jù)根的判別式,有兩個不等的實(shí)根,根的判別式△=b2-4ac>0列出關(guān)于k的不等式12+8k>0,求解即可得到k的取值范圍;

(2)利用(1)中k的取值范圍求得k的整數(shù)解,然后將其代入關(guān)于x的一元二次方程x2-4x+1-2k=0并整理,再根據(jù)配方法進(jìn)行求解;

(3)先求出二次函數(shù)的解析式,然后求出拋物線與x軸的交點(diǎn),從而得到對稱軸的解析式以及AB的長度,再根據(jù)∠DAB=60°求出點(diǎn)D到x軸的距離,然后根據(jù)點(diǎn)D在AB的上方與下方兩種情況討論得解.

詳解:(1)∵關(guān)于x的一元二次方程x2-4x+1-2k=0有兩個不等的實(shí)根,

∴△=(-4)2-4×1×(1-2k)=12+8k>0,

解得,k>-

(2)∵k取小于1的整數(shù),

∴k=-1或0,

①當(dāng)k=-1時,方程為x2-4x+3=0,

即(x-2)2=1,

∴x-2=1或x-2=-1,

解得x1=3,x2=1,

②當(dāng)k=0時,方程為x2-4x+1=0,

即(x-2)2=3,

∵方程的解為整數(shù),

∴k=0不符合,

∴k=-1,此時方程的兩個整數(shù)根是x1=3,x2=1;

(3)如圖所示,根據(jù)(2),二次函數(shù)解析式為,y=x2-4x+3,

∴點(diǎn)A、B的坐標(biāo)分別為A(1,0),B(3,0),

∴對稱軸為x=2,

∴AC=(3-1)=1,

∵∠DAB=60°,

∴AD=2AC=2,

∴CD=,

當(dāng)點(diǎn)D在AB的上方時,坐標(biāo)為(2,),在AB的下方時,坐標(biāo)為(2,-),

∴點(diǎn)D的坐標(biāo)為(2,)或(2,-).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】初一(1)班針對你最喜愛的課外活動項(xiàng)目對全班學(xué)生進(jìn)行調(diào)查(每名學(xué)生分別選一個活動項(xiàng)目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計表,繪制成扇形統(tǒng)計圖.

根據(jù)以上信息解決下列問題:

(1) ,

(2)扇形統(tǒng)計圖中機(jī)器人項(xiàng)目所對應(yīng)扇形的圓心角度數(shù)為

(3)從選航模項(xiàng)目的名學(xué)生中隨機(jī)選取名學(xué)生參加學(xué)校航模興趣小組訓(xùn)練,請用列舉法(畫樹狀圖或列表)求所選取的名學(xué)生中恰好有名男生、名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用一定數(shù)目的點(diǎn)或大小相同的圓在等距離的排列下可以形成一個等邊三角形數(shù)陣.古希臘著名數(shù)學(xué)家畢達(dá)哥拉斯用數(shù),,,……這些數(shù)量的(石子),都成功的排成了等邊三角形數(shù)陣..

(問題提出)結(jié)果等于多少?

在圖1所示的等邊三角形數(shù)陣中,前行有個圓圈,前行有個圓圈,即,前行有個圓圈,即,則前行所有圓圈個數(shù)總和為

將圖1旋轉(zhuǎn)至圖2,觀察這兩個三角形數(shù)陣中同一行圓圈個數(shù)(如第行的圓圈個數(shù)分別為個,個),發(fā)現(xiàn)同一行圓圈個數(shù)之和均為___________個,由此可得兩個圖前行圓圈個數(shù)總和為:___________,因此,___________.

(問題延伸)結(jié)果等于多少?

3

4

在圖3所示的等邊三角形數(shù)陣中,第行圓圈中的數(shù)為,即,第行兩個圓圈中數(shù)字的和為.,第個圓圈中數(shù)字的和為(共個)..這樣,該三角形數(shù)陣中所有圓圈中數(shù)字的和為.

將該三角形數(shù)陣經(jīng)兩次旋轉(zhuǎn)可得如圖4所示的三個三角形數(shù)陣,觀察這三個三角形數(shù)陣中各行同一位置上圓圈中的數(shù)字(如第行的第一個圓圈中的數(shù)字分別為,),發(fā)現(xiàn)相同位置上三個圓圈中數(shù)字之和均為___________,由此可得,這三個三角形數(shù)陣所有圓圈中數(shù)字的總和為:___________,因此,___________.

(規(guī)律應(yīng)用)

根據(jù)以上發(fā)現(xiàn),計算:的結(jié)果為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)的圖象如圖所示,以下結(jié)論:

①常數(shù)m﹣1;

②在每個象限內(nèi),yx的增大而增大;

③若A(﹣1,h),B(2,k)在圖象上,則hk;

④若P(x,y)在圖象上,則P′(﹣x,﹣y)也在圖象上.

其中正確的是(  )

A. ①② B. ②③ C. ③④ D. ①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△OAB中,OA=OB=10cm,AOB=80°,以點(diǎn)O為圓心,半徑為6cm的優(yōu)弧弧MN分別交OA,OB于點(diǎn)M,N.

(1)點(diǎn)P在右半弧上(∠BOP是銳角),將OP繞點(diǎn)O逆時針旋轉(zhuǎn)80°OP′.求證:AP=BP′;

(2)點(diǎn)T在左半弧上,若AT與弧相切,求AT的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級全體學(xué)生在5名教師的帶領(lǐng)下去公園秋游,公園的門票為每人30.現(xiàn)有兩種優(yōu)惠方案,甲方案:帶隊(duì)老師免費(fèi),學(xué)生按8折收費(fèi);乙方案:師生都按7.5折收費(fèi).

(1)若有n名學(xué)生,用含n的代數(shù)式表示兩種優(yōu)惠方案各需多少元?

(2)當(dāng)n=70時,采用哪種方案更優(yōu)惠?

(3)當(dāng)n=100時,采用哪種方案更優(yōu)惠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一筆直的海岸線l上有AB兩個觀測站,A在B的正東方向,AB=2(單位:km).有一艘小船在點(diǎn)P處,從A測得小船在北偏西60°的方向,從B測得小船在北偏東45°的方向.(結(jié)果都保留根號)

(1)求點(diǎn)P到海岸線l的距離;

(2)小船從點(diǎn)P處沿射線AP的方向航行一段時間后,到點(diǎn)C處,此時,從B測得小船在北偏西15°的方向.求點(diǎn)C與點(diǎn)B之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形ABCD被分成六個小的正方,已知中間一個小正方形的邊長為1,其它正方形的邊長分別為a、bc、d.觀察圖形并探索:(1b_____,d_____;(用含a的代數(shù)式表示)(2)長方形ABCD的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,E、F是對角線AC上的兩點(diǎn),∠1=2.

(1)求證:AE=CF;

(2)求證:四邊形EBFD是平行四邊形.

查看答案和解析>>

同步練習(xí)冊答案