【題目】為豐富學生的文體生活,某學校準備成立“聲樂、演講、舞蹈、足球、籃球”五個社團,要求每個學生都參加一個社團且每人只能參加一個社團.為了了解即將參加每個社團的大致人數(shù),學校對部分學生進行了抽樣調(diào)查,在整理調(diào)查數(shù)據(jù)的過程中,繪制出如圖所示的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:
(1)被抽查的學生一共有人__________;
(2)將條形統(tǒng)計圖補充完整;
(3)若全校有學生1500人,請你估計全校有意參加“聲樂”杜團的學生人數(shù);
(4)在“舞蹈社團”活動中,甲、乙、丙、丁、戊五位同學表現(xiàn)優(yōu)秀,現(xiàn)決定從這五位同學中任選兩位參加“元旦迎新匯演”,請用列表或畫樹狀圖的方法求出恰好選中甲、乙兩位同學的概率.
【答案】(1)100;(2)詳見解析;(3)330;(4).
【解析】
(1)根據(jù)參加足球社團總?cè)藬?shù)為15人及所占比例為15%,作除法運算即可得出總?cè)藬?shù)
(2)用隨機抽取的總?cè)藬?shù)減去參加聲樂、演講、足球、籃球社團的人數(shù),即可得出參加舞蹈社團的人數(shù),據(jù)此補全統(tǒng)計圖即可;
(3)全校學生總?cè)藬?shù)乘以參加聲樂社團人數(shù)占抽查人數(shù)的比例即可得出答案;
(4)直接列表求概率即可.
解:(1)(人)
(2)有意參加“舞蹈”社團的人數(shù)為(人)
補全條形統(tǒng)計圖如下:
(3)(人).
答:估計全校有意參加“聲樂”社團的學生人數(shù)有330人.
(4)列表得:
甲 | 乙 | 丙 | 丁 | 戊 | |
甲 | (甲,乙) | (甲,丙) | (甲,丁) | (甲,戊) | |
乙 | (乙,甲) | (乙,丙) | (乙,。 | (乙,戊) | |
丙 | (丙,甲) | (丙,乙) | (丙,。 | (丙,戊) | |
丁 | (丁,甲) | (丁,乙) | (丁,丙) | (丁,戊) | |
戊 | (戊,甲) | (戊,乙) | (戊,丙) | (戊,。 |
由表格可知,所有可能出現(xiàn)的結(jié)果共有20種,且每種結(jié)果出現(xiàn)的可能性相同,其中恰好選中甲、乙兩位同學的結(jié)果有2種.
∴(恰好選中甲、乙兩位同學).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形中,為中點,點為上的動點(不與重合).過作于,于.設的長度為,與的長度和為.則能表示與之間的函數(shù)關系的圖象大致是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=ax2-4ax+c(a≠0)與y軸交于點A,將點A向右平移2個單位長度,得到點B.直線與x軸,y軸分別交于點C,D.
(1)求拋物線的對稱軸.
(2)若點A與點D關于x軸對稱.
①求點B的坐標.
②若拋物線與線段BC恰有一個公共點,結(jié)合函數(shù)圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,一輛單車放在水平的地面上,車把頭下方處與坐墊下方處在平行于地面的同一水平線上,,之間的距離約為,現(xiàn)測得,與的夾角分別為與,若點到地面的距離為,坐墊中軸處與點的距離為,求點到地面的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是根據(jù)九年級某班50名同學一周的鍛煉情況繪制的條形統(tǒng)計圖,下面關于該班50名同學一周鍛煉時間的說法錯誤的是( 。
A.平均數(shù)是6
B.中位數(shù)是6.5
C.眾數(shù)是7
D.平均每周鍛煉超過6小時的人數(shù)占該班人數(shù)的一半
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)上部分點的橫坐標x與縱坐標y的對應值如下表:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … |
| ﹣4 | ﹣4 | 0 | … |
(1)求該拋物線的表達式;
(2)已知點E(4, y)是該拋物線上的點,點E關于拋物線的對稱軸對稱的點為點F,求點E和點F的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:如圖1,在△ABC中,當DE∥BC時可以得到三組成比例線段:① ;② ;③ .反之,當對應線段程比例時也可以推出DE∥BC.
理解運用:三角形的內(nèi)接四邊形是指頂點在三角形各邊上的四邊形.
(1)如圖2,已知矩形DEFG是△ABC的一個內(nèi)接矩形,將矩形DEFG沿CB方向向左平移得矩形PBQH,其中頂點D、E、F、G的對應點分別為P、B、Q、H,在圖2中畫出平移后的圖形;
(2)在(1)所得的圖形中,連接CH并延長交BP的延長線于點R,連接AR.求證:AR∥BC;
(3)如圖3,某小區(qū)有一塊三角形空地,已知△ABC空地的邊AB=400米,BC=600米,∠ABC=45°;準備在△ABC內(nèi)建一個內(nèi)接矩形廣場DEFG(點E、F在邊BC上,點D、G分別在邊AB和AC上),三角形其余部分進行植被綠化,按要求欲使矩形DEFG的對角線EG最短,請在備用圖中畫出使對角線EG最短的矩形.并求出對角線EG的最短距離(不要求證明).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC邊為直徑作O交BC邊于點D,過點D作DE⊥AB于點E,ED、AC的延長線交于點F.
(1)求證:EF是O的切線;
(2)若EB=6,且sin∠CFD=,求O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com