【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線ykxk0)分別交反比例函數(shù)yy 在第一象限的圖象于點(diǎn)A,B,過點(diǎn)BBDx軸于點(diǎn)D,交y的圖象于點(diǎn)C,連接AC.若△ABC是等腰三角形,則k的值是_____

【答案】

【解析】

根據(jù)一次函數(shù)和反比例函數(shù)的解析式,即可求得點(diǎn)AB、C的坐標(biāo)(用k表示),再討論ABBC,ACBC,即可解題.

解:∵點(diǎn)Bykxy 的交點(diǎn),ykx

∴點(diǎn)B坐標(biāo)為(,4),

同理可求出點(diǎn)A的坐標(biāo)為(2),

BDx軸,

∴點(diǎn)C橫坐標(biāo)為,縱坐標(biāo)為

BA,ACBC3,

BA2AC23k0

BAAC,

若△ABC是等腰三角形,

ABBC,則3

解得:k;

ACBC,則

3

解得:k;

故答案為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】背景知識:如圖,在中,,若,則:

1)解決問題:

如圖(1),,,是過點(diǎn)的直線,過點(diǎn)于點(diǎn),連接,現(xiàn)嘗試探究線段、、 之間的數(shù)量關(guān)系:過點(diǎn),與交于點(diǎn),易發(fā)現(xiàn)圖中出現(xiàn)了一對全等三角形,即,由此可得線段、、之間的數(shù)量關(guān)系是: ;

2)類比探究:

將圖(1)中的繞點(diǎn)旋轉(zhuǎn)到圖(2)的位置,其它條件不變,試探究線段、、之間的數(shù)量關(guān)系,并證明;

3)拓展應(yīng)用:

將圖(1)中的繞點(diǎn)旋轉(zhuǎn)到圖 3)的位置,其它條件不變,若,,則的長為 (直接寫結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AD=6,點(diǎn)E是邊CD上的動(dòng)點(diǎn)(點(diǎn)E不與端點(diǎn)C,D重合),AE的垂直平分線FG分別交AD,AE,BC于點(diǎn)F,H,G.當(dāng)=時(shí),DE的長為( )

A. 2 B. C. D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x22(k+1)x+k2+k=0.

(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;

(2)若△ABC的兩邊AB,AC的長是方程的兩個(gè)實(shí)數(shù)根,第三邊BC的長為5.當(dāng)△ABC是等腰三角形時(shí),求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知甲,乙兩名自行車騎手均從P地出發(fā),騎車前往距P60千米的Q地,當(dāng)乙騎手出發(fā)了1.5小時(shí),此時(shí)甲,乙兩名騎手相距6千米,因甲騎手接到緊急任務(wù),故甲到達(dá)Q地后立即又原路返回P地甲,乙兩名騎手距P地的路程y(千米)與時(shí)間x(時(shí))的函數(shù)圖象如圖所示.(其中折線OABCD(實(shí)線)表示甲,折線OEFG(虛線)表示乙)

1)甲騎手在路上停留   小時(shí),甲從Q地返回P地時(shí)的騎車速度為   千米/時(shí);

2)求乙從P地到Q地騎車過程中(即線段EF)距P地的路程y(千米)與時(shí)間x(時(shí))的函數(shù)關(guān)系式及自變量x的取值范圍;

3)在乙騎手出發(fā)后,且在甲,乙兩人相遇前,求時(shí)間x(時(shí))的值為多少時(shí),甲,乙兩騎手相距8千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),中,分別是、邊上的高,、分別是線段、的中點(diǎn).

1)求證:;

2)聯(lián)結(jié),猜想之間的關(guān)系,并寫出推理過程;

3)若將銳角變?yōu)殁g角,如圖(2),上述(1)(2)中的結(jié)論是否都成立?若結(jié)論成立,直接回答,不需證明;若結(jié)論不成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線a,b,c表示交叉的三條公路,現(xiàn)要建一貨物中轉(zhuǎn)站,要求它到這三條公路的距離相等,則可供選擇的站址最多有  

A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊ABC中,AB=4,D是BC的中點(diǎn),將ABD繞點(diǎn)A旋轉(zhuǎn)后得到ACE,連接DE交AC于點(diǎn)F,則AEF的面積為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線

(1)直接寫出拋物線的開口方向、對稱軸和頂點(diǎn)坐標(biāo);

(2)若拋物線與軸的兩個(gè)交點(diǎn)為、,與軸的一個(gè)交點(diǎn)為,畫草圖,求的面積.

查看答案和解析>>

同步練習(xí)冊答案