【題目】某縣盛產(chǎn)蘋果,春節(jié)期問,一外地經(jīng)銷商安排輛汽年裝運(yùn)、、三種不同品質(zhì)的蘋果噸到外地銷售,按計(jì)劃輛汽年都要裝滿且每輛汽車只能裝同一種品質(zhì)的蘋果,每輛汽車的運(yùn)載量及每噸蘋果的獲利如下表:
蘋果品種 | |||
每輛汽車運(yùn)載數(shù) | |||
每噸獲利(元) |
(1)設(shè)裝運(yùn)種蘋果的車輛數(shù)為輛,裝運(yùn)種蘋果車輛數(shù)為輛,據(jù)上表提供的信息,求出與之間的函數(shù)關(guān)系式;
(2)為了減少蘋果的積壓,縣林業(yè)局制定出臺(tái)了促進(jìn)銷售的優(yōu)惠政策,在外地經(jīng)銷商原有獲利不變情況下,政府對(duì)外地經(jīng)銷商按每噸元的標(biāo)準(zhǔn)實(shí)行運(yùn)費(fèi)補(bǔ)貼若種蘋果的車輛數(shù)滿足.若要使該外地經(jīng)銷商所獲利(元)最大,應(yīng)采用哪種車輛安排方案?并求出最大利潤(rùn)(元)的最大值.
【答案】(1)y=15-2x;(2)裝運(yùn)A、B、C三種不同品質(zhì)的車輛分別是3輛、9輛、3輛,利潤(rùn)W(元)的最大值是111000元.
【解析】
(1)根據(jù)題意和表格中的數(shù)據(jù)可以列出關(guān)于x和y的關(guān)系式,從而得出y與x之間的函數(shù)關(guān)系式;
(2)根據(jù)題意和表格中的數(shù)據(jù)可以求得總獲利為:裝運(yùn)A種蘋果的車輛數(shù)×9×600+裝運(yùn)B種蘋果的車輛數(shù)×8×1000+裝運(yùn)C種蘋果的車輛數(shù)×7×800+運(yùn)費(fèi)補(bǔ)貼,再根據(jù)x的范圍得出采用哪種車輛安排方案可以使得W最大,并求得W的最大值.
解:(1)由題意可得,
9x+8y+7(15-x-y)=120,
化簡(jiǎn),得y=15-2x,
即y與x之間的函數(shù)關(guān)系式為y=15-2x;
(2)設(shè)裝運(yùn)A種蘋果的車輛數(shù)為x輛,
W=9x×600+8(15-2x)×1000+7[15-x-(15-2x)]×800+120×50=-5000x+126000,
∵3≤x≤6,
∴x=3時(shí),W取得最大值,此時(shí)W=111000,
答:裝運(yùn)A、B、C三種不同品質(zhì)的車輛分別是3輛、9輛、3輛,利潤(rùn)W(元)的最大值是111000元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形的兩邊分別在軸、軸的正半軸上,.點(diǎn)從點(diǎn)出發(fā),沿軸以每秒個(gè)單位長(zhǎng)的速度向點(diǎn)勻速運(yùn)動(dòng),當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間是t秒.將線段的中點(diǎn)繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn),得點(diǎn),點(diǎn)隨點(diǎn)的運(yùn)動(dòng)而運(yùn)動(dòng),連接.
(1)請(qǐng)用含t的代數(shù)式表示出點(diǎn)的坐標(biāo).
(2)求為何值時(shí),的面積最大,最大為多少?
(3)在點(diǎn)從向運(yùn)動(dòng)的過程中,能否成為直角三角形?若能,求的值:若不能,請(qǐng)說明理由.
(4)請(qǐng)直接寫出整個(gè)運(yùn)動(dòng)過程中,點(diǎn)所經(jīng)過的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用長(zhǎng)為6米的鋁合金條制成如圖所示的窗框,若窗框的高為米,窗戶的透光面積為平方米(鋁合金條的寬度不計(jì)).
(1)與之間的函數(shù)關(guān)系式為 (不要求寫自變量的取值范圍);
(2)如何安排窗框的高和寬,才能使窗戶的透光面積最大?并求出此時(shí)的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算(每小題4分,共16分)
(1)
(2)已知.求代數(shù)式的值.
(3)先化簡(jiǎn),再求值,其中.
(4)解分式方程:+3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由大小相同的棱長(zhǎng)為的小正方體搭成的幾何體,
請(qǐng)分別畫出它的從正面、左面、上面看到的形狀圖.
擺成如圖的形狀后,表面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤b2>4ac;其中正確的結(jié)論有______.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)C.拋物線經(jīng)過A,C兩點(diǎn),且與x軸交于另一點(diǎn)B(點(diǎn)B在點(diǎn)A右側(cè)).
(1)求拋物線的解析式及點(diǎn)B坐標(biāo);
(2)若點(diǎn)M是線段BC上的一動(dòng)點(diǎn),過點(diǎn)M的直線EF平行y軸交x軸于點(diǎn)F,交拋物線于點(diǎn)E.求ME長(zhǎng)的最大值;
(3)試探究當(dāng)ME取最大值時(shí),在拋物線上、x軸下方是否存在點(diǎn)P,使以M,F(xiàn),B,P為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是AB延長(zhǎng)線上一點(diǎn),CD與⊙O相切于點(diǎn)E,AD⊥CD于點(diǎn)D.
(1)求證:AE平分∠DAC;
(2)若AB=4,∠ABE=60°.
①求AD的長(zhǎng);
②求出圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉?chǎng)購(gòu)物的支付方式更加多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)并繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問題:
(1)這次活動(dòng)共調(diào)查了 人;在扇形統(tǒng)計(jì)圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.觀察此圖,支付方式的“眾數(shù)”是“ ”;
(3)在一次購(gòu)物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進(jìn)行支付,請(qǐng)用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com