【題目】在平面直角坐標(biāo)系中,△ABC的三個頂點的位置如圖所示,點A'的坐標(biāo)是(-2,2),現(xiàn)將△ABC平移,使點A變換為A',點B'、C'分別是點B、C的對應(yīng)點.
(1)請畫出平移后的△A'B'C'(不寫畫法),并直接寫出點B'、C'的坐標(biāo):B'_________,C'_________;
(2)若△ABC內(nèi)部一點P的坐標(biāo)為(a,b),則點P的對應(yīng)點P'的坐標(biāo)是____________ .
【答案】(﹣4,1) (﹣1,﹣1) (a﹣5,b﹣2)
【解析】
(1)利用點A和點A'的坐標(biāo)確定平移的方向與距離,然后利用此平移規(guī)律寫出B'、C'點的坐標(biāo),再描點連線即可;
(2)利用(1)中的平移規(guī)律寫出P'點的坐標(biāo).
(1)如圖,△A'B'C’,B'的坐標(biāo)為(﹣4,1)、C'的坐標(biāo)為(﹣1,﹣1);
(2)若△ABC內(nèi)部一點P的坐標(biāo)為(a,b),則點P的對應(yīng)點P'的坐標(biāo)是(a﹣5,b﹣2).
故答案為:(﹣4,1),(﹣1,﹣1);(a﹣5,b﹣2).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2013年某企業(yè)按餐廚垃圾處理費25元/噸,建筑垃圾處理費16元/噸標(biāo)準(zhǔn),共支付餐廚和建筑垃圾處理費5200元,從2014年元月起,收費標(biāo)準(zhǔn)上調(diào)為:餐廚垃圾處理費100元/噸,建筑垃圾處理費30元/噸,若該企業(yè)2014年處理的這兩種垃圾數(shù)量與2013年相比沒有變化,就要多支付垃圾處理費8800元,
(1)該企業(yè)2013年處理的餐廚垃圾和建筑垃圾各多少噸?
(2)該企業(yè)計劃2014年將上述兩種垃圾處理量減少到240噸,且建筑垃圾處理費不超過餐廚垃圾處理量的3倍,則2014年該企業(yè)最少需要支付這兩種垃圾處理費共多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店出售A,B兩種筆記本,其中購買2本A型筆記本和3本B型筆記本花費42元,購買3本A型筆記本和2本B型筆記本花費38元.
(1)A型筆記本和B型筆記本的單價為多少元?
(2)若一次購買B型筆記本超過20本時,超過20本部分的B型記筆記價格打8折,分別寫出兩種筆記本的付款金額y(元)關(guān)于購買量x(本)的函數(shù)解析式;
(3)某校準(zhǔn)備在一次學(xué)習(xí)競賽后購買這90本兩種筆記本用于獎勵,其中A型筆記本數(shù)量不超過B型筆記本的一半,兩種筆記本各買多少時,總費用最少,最少費用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=24厘米,BC=16厘米,點D為AB的中點,點P在線段BC上以4厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.當(dāng)點Q的運動速度為_______厘米/秒時,能夠在某一時刻使△BPD與△CQP全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形A1B1C1O ,A2B2C2C1,A3B3C3C2 … 按如圖的方式放置點A1 ,A2 ,A3和點C1 ,C2 ,C3 …分別在直線y=x+1和x軸上,則點B2019的縱坐標(biāo)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 下圖是某學(xué)校全體教職工年齡的頻數(shù)分布直方圖(統(tǒng)計中采用“上限不在內(nèi)”的原則,如年齡為36歲統(tǒng)計在36≤x<38小組,而不在34≤x<36小組),根據(jù)圖形提供的信息,下列說法中錯誤的是
A.該學(xué)校教職工總?cè)藬?shù)是50人
B.年齡在40≤x<42小組的教職工人數(shù)占該學(xué)校總?cè)藬?shù)的20%
C.教職工年齡的中位數(shù)一定落在40≤x<42這一組
D.教職工年齡的眾數(shù)一定在38≤x<40這一組
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB=10,BC=8,P、Q分別是AB、BC邊上的點,且AP=BQ=a (其中0<a<8).
(1)若PQ⊥BC,求a的值;
(2)若PQ=BQ,把線段CQ繞著點Q旋轉(zhuǎn)180°,試判別點C的對應(yīng)點C’是否落在線段QB上?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=10,AC=2,BC邊上的高AD=6,則另一邊BC等于_______.
【答案】10或6
【解析】試題解析:根據(jù)題意畫出圖形,如圖所示,
如圖1所示,AB=10,AC=2,AD=6,
在Rt△ABD和Rt△ACD中,
根據(jù)勾股定理得:BD==8,CD==2,
此時BC=BD+CD=8+2=10;
如圖2所示,AB=10,AC=2,AD=6,
在Rt△ABD和Rt△ACD中,
根據(jù)勾股定理得:BD==8,CD==2,
此時BC=BD-CD=8-2=6,
則BC的長為6或10.
【題型】填空題
【結(jié)束】
12
【題目】在平面直角坐標(biāo)系中,已知一次函數(shù)y=2x+1的圖象經(jīng)過P1(x1,y1)、P2(x2,y2)兩點,若x1<x2,則y1 ______ y2.(填“>”“<”或“=”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,使ΔABC≌ΔADC成立的條件是( )
A.AB=AD,∠B=∠DB.AB=AD,∠ACB=ACD
C.BC=DC,∠BAC=∠DACD.AB=AD,∠BAC=∠DAC
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com