【題目】如圖,在ABC中,AB邊的垂直平分線l1BC于點(diǎn)D,AC邊的垂直平分線l2BC于點(diǎn)E,l1l2相交于點(diǎn)O,連接AD,AE,ADE的周長為12cm

1)求BC的長;

2)分別連接OA,OBOC,若OBC的周長為26cm,求OA的長.

【答案】(1)12cm;(27cm.

【解析】

1)根據(jù)線段垂直平分線的性質(zhì)可得AE=CE,AD=BD,根據(jù)△ADE的周長即可得BC的長;(2)根據(jù)線段垂直平分線的性質(zhì)可得OA=OB=OC,根據(jù)△OBC的周長求出OB的長即可得答案.

1)∵l1垂直平分AB

DBDA,

同理EAEC

BCBD+DE+ECDA+DE+EA12cm;

2)如圖,連接OA、OB、OC,

l1垂直平分AB

OBOA,

同理OAOC

OAOBOC,

∵△OBC的周長為26cm,BC12cm

OB+OC261214cm,

OBOC7cm,

OA7cm

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖在ABC中,ADBE分別是BC,AC邊上的高,AD、BE交于H,DA=DB,BH=AC,點(diǎn)FBH的中點(diǎn),ABE=15°.

1)求證:ADC≌△BDH

2)求證:DC=DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上,李老師出示了如下框中的題目.

小敏與同桌小聰討論后,進(jìn)行了如下解答:

1)特殊情況,探索結(jié)論:當(dāng)點(diǎn)EAB的中點(diǎn)時(shí),如圖1,確定線段AE與的DB大小關(guān)系.請(qǐng)你直接寫出結(jié)論:AE   DB(填,).

2)特例啟發(fā),解決問題:解:題目中,AEDB的大小關(guān)系是:AE   DB(填,).理由如下:如圖2,過點(diǎn)EEFBC,交AC于點(diǎn)F,(請(qǐng)你完成以下解答過程)

3)拓展結(jié)論,設(shè)計(jì)新題:在等邊三角形ABC中,點(diǎn)EAB的延長線上,點(diǎn)D在直線BC上,且EDEC.若ABC的邊長為2,AE3,求CD的長.(請(qǐng)畫出符合題意的圖形,并直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形ABCD中,E是AD的中點(diǎn),以點(diǎn)E直角頂點(diǎn)的直角三角形EFG的兩邊EF,EG分別過點(diǎn)B,C,∠F=30°.

(1)求證:BE=CE

(2)將△EFG繞點(diǎn)E按順時(shí)針方向旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到EF與AD重合時(shí)停止轉(zhuǎn)動(dòng).若EF,EG分別與AB,BC相交于點(diǎn)M,N.(如圖2)

①求證:△BEM≌△CEN;

②若AB=2,求△BMN面積的最大值;

③當(dāng)旋轉(zhuǎn)停止時(shí),點(diǎn)B恰好在FG上(如圖3),求sin∠EBG的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB20°,M,N分別是邊OAOB上的定點(diǎn),P,Q分別是邊OBOA上的動(dòng)點(diǎn),記∠OPMα,∠OQNβ,當(dāng)MP+PQ+QN最小時(shí),則關(guān)于αβ的數(shù)量關(guān)系正確的是( )

A.βα30°B.βα40°C.β+α180°D.β+α200°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了檢驗(yàn)教室里的矩形門框是否合格,某班的四個(gè)學(xué)習(xí)小組用三角板和細(xì)繩分別測得如下結(jié)果,其中不能判定門框是否合格的是( )

A. AB=CD,AD=BC,AC=BD B. AC=BD,∠B=∠C=90° C. AB=CD,∠B=∠C=90° D. AB=CD,AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張老師買了一套帶有屋頂花園的住房,為了美化居住環(huán)境,張老師準(zhǔn)備用100元錢買4株月季花,2株黃果蘭種在花園中.已知3株月季花、4株黃果蘭共需158元,2株月季花、3株黃果蘭共需117元.問:張老師用100元錢能否買回他所需要的花卉?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方體紙盒的表面積為12cm2;

1)求正方體的棱長;

2)剪去蓋子后,插入一根長為5cm的細(xì)木棒,則細(xì)木棒露在外面的最短長度是多少?

3)一只螞蟻在紙盒的表面由A爬到B,求螞蟻行走的最短路線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2-2x-3的頂點(diǎn)為A,x軸于B,D兩點(diǎn),y軸交于點(diǎn)C.

(1)求線段BD的長;

(2)ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案