【題目】如圖,直線y=2x+2與y軸交于A點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)M,過(guò)M作MH⊥x軸于點(diǎn)H,且tan∠AHO=2.
(1)求k的值;
(2)在y軸上是否存在點(diǎn)B,使以點(diǎn)B、A、H、M為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出B點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)N(a,1)是反比例函數(shù)y=(x>0)圖象上的點(diǎn),在x軸上有一點(diǎn)P,使得PM+PN最小,請(qǐng)求出點(diǎn)P的坐標(biāo).
【答案】(1)4;(2)見解析.
【解析】分析:(1)對(duì)于y=2x+2,令x=0求出y的值,確定出A的坐標(biāo),得到OA的長(zhǎng),根據(jù)tan∠AHO的值,利用銳角三角函數(shù)定義求出OH的長(zhǎng),根據(jù)MH垂直于x軸,確定出M橫坐標(biāo),代入直線解析式求出縱坐標(biāo),確定出M的坐標(biāo),代入反比例解析式求出k的值即可;
(2)存在,理由為:如圖所示,分兩種情況考慮:當(dāng)四邊形P1AHM為平行四邊形時(shí);當(dāng)四邊形AP2HM為平行四邊形時(shí),利用平行四邊形的性質(zhì)確定出P的坐標(biāo)即可;
(3)把M坐標(biāo)代入反比例解析式求出a的值,確定出N坐標(biāo),過(guò)點(diǎn)N作N關(guān)于x軸的對(duì)稱點(diǎn)N1,連接MN1,交x軸于P,此時(shí)PM+PN最小,利用待定系數(shù)法確定出直線MN1的解析式,即可確定出P的坐標(biāo).
詳解:(1)由y=2x+2可知A(0,2),即OA=2,
∵tan∠AHO=2,
∴OH=1.
∵MH⊥x軸,
∴點(diǎn)M的橫坐標(biāo)為1.
∵點(diǎn)M在直線y=2x+2上,
∴點(diǎn)M的縱坐標(biāo)為4,∴M(1,4).
∵點(diǎn)M在反比例函數(shù)y=(x>0)的圖象上,
∴k=1×4=4.
(2)存在,如圖所示:
當(dāng)四邊形B1AHM為平行四邊形時(shí),B1A=MH=4,
∴B1A+AO=4+2=6,即B1(0,6).
當(dāng)四邊形AB2HM為平行四邊形時(shí),MH=AB2=4,
∴OB2=AB2-OA=4-2=2,此時(shí)B2(0,-2),
綜上,存在滿足條件的點(diǎn)B,且B點(diǎn)坐標(biāo)為(0,6)或(0,-2).
(3)∵點(diǎn)N(a,1)在反比例函數(shù)y=(x>0)的圖象上,
∴a=4,即點(diǎn)N的坐標(biāo)為(4,1).
過(guò)點(diǎn)N作N關(guān)于x軸的對(duì)稱點(diǎn)N1,連接MN1,交x軸于P,此時(shí)PM+PN最小.
∵N與N1關(guān)于x軸對(duì)稱,N點(diǎn)坐標(biāo)為(4,1),
∴N1的坐標(biāo)為(4,-1).
設(shè)直線MN1的解析式為y=kx+b(k≠0),
由解得
∴直線MN1的解析式為y=-x+.
令y=0,得x=,
∴P點(diǎn)坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】E、F,G、H依次為四邊形ABCD各邊的中點(diǎn),若四邊形ABCD滿足______條件,那么四邊形EFGH是矩形.(只需填一個(gè)你認(rèn)為合適的條件)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AD≠BC,∠B=90°,AG∥CD交BC于點(diǎn)G,點(diǎn)E、F分別為AG、CD的中點(diǎn),連接DE、FG.
(1)求證:四邊形DEGF是平行四邊形;
(2)當(dāng)點(diǎn)G是BC的中點(diǎn)時(shí),求證:四邊形DEGF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為測(cè)量一座山峰CF的高度,將此山的某側(cè)山坡劃分為AB和BC兩段,每一段山坡近似是“直”的,測(cè)得坡長(zhǎng)AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.
(1)求AB段山坡的高度EF;
(2)求山峰的高度CF.(1.414,CF結(jié)果精確到米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊上一點(diǎn),∠B=30°∠DAB=45°.(1)求∠DAC的度數(shù);(2)請(qǐng)說(shuō)明:AB=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公交公司決定更換節(jié)能環(huán)保的新型公交車購(gòu)買的數(shù)量和所需費(fèi)用如下表所示:
A型數(shù)量輛 | B型數(shù)量輛 | 所需費(fèi)用萬(wàn)元 |
3 | 1 | 450 |
2 | 3 | 650 |
求A型和B型公交車的單價(jià);
該公司計(jì)劃購(gòu)買A型和B型兩種公交車共10輛,已知每輛A型公交車年均載客量為60萬(wàn)人次,每輛B型公交車年均載客量為100萬(wàn)人次,若要確保這10輛公交車年均載客量總和不少于670萬(wàn)人次,則A型公交車最多可以購(gòu)買多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某銷售商計(jì)劃購(gòu)進(jìn)甲、乙兩種商品共件進(jìn)行銷售.已知甲種商品每件進(jìn)價(jià)元,乙種商品每件進(jìn)價(jià)元;通過(guò)市場(chǎng)考察,銷售商決定甲種商品以每件元的價(jià)格出售,乙種商品以每件元的價(jià)格出售.設(shè)銷售商購(gòu)進(jìn)的甲種商品有件,銷售完甲、乙兩種商品后獲得的總利潤(rùn)為元
求與的函數(shù)關(guān)系式;
如果銷售商購(gòu)進(jìn)的甲種商品的數(shù)量不少于乙種商品數(shù)量的倍,請(qǐng)求出獲利最大的進(jìn)貨方案,所獲得的最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是一座立交橋的示意圖(道路寬度忽略不計(jì)), A為入口, F,G為出口,其中直行道為AB,CG,EF,且AB=CG=EF ;彎道為以點(diǎn)O為圓心的一段弧,且弧BC,弧ED,弧CD所對(duì)的圓心角均為90°.甲、乙兩車由A口同時(shí)駛?cè)肓⒔粯,均?/span>10m/s的速度行駛,從不同出口駛出. 其間兩車到點(diǎn)O的距離y(m)與時(shí)間x(s)的對(duì)應(yīng)關(guān)系如圖2所示.結(jié)合題目信息,下列說(shuō)法錯(cuò)誤的是( )
A. 甲車在立交橋上共行駛8s B. 從F口出比從G口出多行駛40m
C. 甲車從F口出,乙車從G口出 D. 立交橋總長(zhǎng)為150m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分線AE交BC于點(diǎn)E,連接DE.
(1)求證:四邊形ABED是菱形;
(2)若∠ABC=60°,CE=2BE,試判斷△CDE的形狀,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com