【題目】某公交公司決定更換節(jié)能環(huán)保的新型公交車購買的數(shù)量和所需費(fèi)用如下表所示:

A型數(shù)量

B型數(shù)量

所需費(fèi)用萬元

3

1

450

2

3

650

A型和B型公交車的單價(jià);

該公司計(jì)劃購買A型和B型兩種公交車共10輛,已知每輛A型公交車年均載客量為60萬人次,每輛B型公交車年均載客量為100萬人次,若要確保這10輛公交車年均載客量總和不少于670萬人次,則A型公交車最多可以購買多少輛?

【答案】(1)購買每輛A型公交車100萬元,購買每輛B型公交車150萬元;(2)A型公交車最多可以購買8輛.

【解析】分析:(1)根據(jù)“購買A型公交車3輛,B型公交車1輛,共需450萬元;若購買A型公交車2輛,B型公交車3輛,共需650萬元”列方程組求解可得;

(2)設(shè)購買A型公交車x輛,則購買B型公交車(10-x)輛,根據(jù)“這10輛公交車年均載客量總和不少于670萬人次”求得x的范圍即可.

詳解:設(shè)A型和B型公交車的單價(jià)分別為a萬元,b萬元,根據(jù)題意,得:,

解得:,

答:購買每輛A型公交車100萬元,購買每輛B型公交車150萬元;

設(shè)購買A型公交車x輛,則購買B型公交車輛,

根據(jù)題意得:

解得:,

,且,

,

最大整數(shù)為8,

答:A型公交車最多可以購買8輛.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形中,,點(diǎn)點(diǎn)出發(fā),沿路線運(yùn)動,到點(diǎn)停止;點(diǎn)點(diǎn)出發(fā),沿A運(yùn)動,到點(diǎn)停止,若點(diǎn)、點(diǎn)同時(shí)出發(fā),點(diǎn)的速度為每秒,點(diǎn)的速度為每秒,秒時(shí)點(diǎn)、點(diǎn)同時(shí)改變速度,點(diǎn)的速度變?yōu)槊棵?/span>,點(diǎn)的速度變?yōu)槊棵?/span>,如圖2是點(diǎn)出發(fā)秒后的面積的函數(shù)關(guān)系圖象,圖3是點(diǎn)出發(fā)秒后的面積的函數(shù)關(guān)系圖象,根據(jù)圖象:

1)點(diǎn)經(jīng)過______秒運(yùn)動到點(diǎn),此時(shí)的面積為______;點(diǎn)經(jīng)過______秒運(yùn)動到點(diǎn);

2______秒,______,______

3)設(shè)點(diǎn)離開點(diǎn)的路程為,點(diǎn)到點(diǎn)還需要走的路程為,請分別寫出改變速度后、與出發(fā)后的運(yùn)動時(shí)間(秒)的函數(shù)關(guān)系式;

4)直接寫出相遇時(shí)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

1(用配方法);

2 ;

3

4(50020x)10+x=6000

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)(2,-4)在正比例函數(shù)y=kx的圖象上。

(1)求k的值;

(2)若點(diǎn)(-1,m)在函數(shù)y=kx的圖象上,試求出m的值;

(3)若A(,y1),B(-2,y2),C(1,y3)都在此函數(shù)圖象上,試比較y1,y2,y3的大小。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖①,ABC是等邊三角形,點(diǎn)D是邊BC上任意一點(diǎn)(不與B、C重合),點(diǎn)E在邊AC上,∠ADE=60°,∠BAD與∠CDE有怎樣的數(shù)量關(guān)系,并給予證明.

2)如圖②,在ABC中,AB=AC,點(diǎn)D是邊BC上一點(diǎn)(不與B、C重合), ADE=B,點(diǎn)E在邊AC.CE=BD=3,BC=8,求AB的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】超速行駛是引發(fā)交通事故的主要原因.上周末,小鵬等三位同學(xué)在濱海大道紅樹林路段,嘗試用自己所學(xué)的知識檢測車速,觀測點(diǎn)設(shè)在到公路l的距離為100米的P處.這時(shí),一輛富康轎車由西向東勻速駛來,測得此車從A處行駛到B處所用的時(shí)間為3秒,并測得∠APO=60°,BPO=45°,試判斷此車是否超過了每小時(shí)80千米的限制速度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位的正方形.RtABC的頂點(diǎn)均在格點(diǎn)上,建立平面直角坐標(biāo)系后,點(diǎn)A的坐標(biāo)為(﹣4,1),點(diǎn)B的坐標(biāo)為(﹣1,1).

(1)先將RtABC向右平移5個(gè)單位,再向下平移1個(gè)單位后得到RtA1B1C1.試在圖中畫出圖形RtA1B1C1,并寫出A1的坐標(biāo);

(2)將RtA1B1C1繞點(diǎn)A1順時(shí)針旋轉(zhuǎn)90°后得到RtA2B2C2,試在圖中畫出圖形RtA2B2C2.并計(jì)算RtA1B1C1在上述旋轉(zhuǎn)過程中C1所經(jīng)過的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,BAC=60°,

(1)如果ABC角平分線BD、CE相交與點(diǎn)O,則∠BOC_________。

(2)如果ABC的高BDCE相交與點(diǎn)O,求∠BOC的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AE∥BF,AC、BD分別是∠BAD、∠ABC的平分線,且AC交BF于點(diǎn)C,BD交AE于點(diǎn)D,連接CD.求證:四邊形ABCD是菱形.

查看答案和解析>>

同步練習(xí)冊答案