【題目】分類討論是一種非常重要的數(shù)學(xué)方法,如果一道題提供的已知條件中包含幾種情況,我們可以分情況討論來(lái)求解.例如:若,的值.

情況x=3,y=2時(shí),=5

情況x=3,y=-2時(shí),=1

情況③若x=-3,y=2時(shí),=-1

情況④若x=-3,y=-2時(shí),=-5

所以,的值為1,-1,5,-5.

幾何的學(xué)習(xí)過(guò)程中也有類似的情況:

如圖,點(diǎn)O是直線AB上的一點(diǎn),將一直角三角板如圖擺放,過(guò)點(diǎn)O作射線OE平分.當(dāng)直角三角板繞點(diǎn)O繼續(xù)順時(shí)針旋轉(zhuǎn)一周回到圖1的位置時(shí),在旋轉(zhuǎn)過(guò)程中你發(fā)現(xiàn)與∠DOE,)之間有怎樣的數(shù)量關(guān)系?

情況(1)如圖1,當(dāng)時(shí),若,則∠DOE度數(shù)是

情況(2)如圖2,當(dāng)∠AOC是鈍角時(shí),使得直角邊OC在直線AB的上方,若∠AOC=160°,其他條件不變,則∠DOE的度數(shù)是

情況(3)若,在旋轉(zhuǎn)過(guò)程中你發(fā)現(xiàn)與∠DOE之間有怎樣的數(shù)量關(guān)系?請(qǐng)你直接用含α的代數(shù)式表示∠DOE的度數(shù);

【答案】(1)20度;(2)80度;(3)當(dāng)OCAB上方時(shí),∠DOE的度數(shù)是,當(dāng)OCAB下方時(shí),∠DOE的度數(shù)是.

【解析】

(1)如圖1,根據(jù)角平分線得∠COE=70°,利用三角板得∠COD=90°,即可解題,(2)根據(jù)角平分線得∠COE=10°,利用三角板得∠COD=90°,即可解題,(3)當(dāng)OC在AB上方時(shí)和OC在AB下方時(shí),分類討論即可求解.

:(1)如圖1,∵∠AOC=40°,

∴∠BOC=140°,

∵OE平分,

∴∠COE=70°,

∴∠DOE=90°-70°=20°,

(2)如圖2,同理可證

∠BOC=20°,

∵OE平分,

∴∠COE=10°,

∴∠DOE=90°-10°=80°,

(3)同前兩問(wèn),當(dāng)OCAB上方時(shí),∠DOE的度數(shù)=

理由如圖1, ∵∠AOC=α,

∴∠BOC=180°-α,

∵OE平分,

∴∠COE=90°-,

∴∠DOE=90°-(90°-)=,

同理當(dāng)OCAB下方時(shí),∠DOE的度數(shù)=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)有若干套損壞的桌椅,現(xiàn)有甲、乙兩名木工,甲每天可以修桌椅16套,乙每天比甲多修桌椅8套,甲單獨(dú)修完這些桌椅比乙單獨(dú)修完多用10天,學(xué)校每天付甲80元修理費(fèi),付乙120元修理費(fèi).

1)這批損壞的桌椅有多少套?(列方程解答)

2)在修理過(guò)程中,學(xué)校要派一名工作人員進(jìn)行質(zhì)量監(jiān)督,學(xué)校負(fù)擔(dān)他每天30元生活補(bǔ)助費(fèi),現(xiàn)有兩種修理方案:

①由乙單獨(dú)修理;

②甲、乙合作同時(shí)修理.

你認(rèn)為哪種方案省錢?試通過(guò)計(jì)算說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)≤x≤2時(shí),函數(shù)y=﹣2x+b的圖象上至少有一點(diǎn)在函數(shù)y=的圖象下方,則b的取值范圍為( 。

A. b B. b< C. b<3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列圖案中既是中心對(duì)稱圖形,又是軸對(duì)稱圖形的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣3經(jīng)過(guò)點(diǎn)A(2,﹣3),與x軸負(fù)半軸交于點(diǎn)B,與y軸交于點(diǎn)C,且OC=3OB.

(1)求拋物線的解析式;

(2)點(diǎn)Dy軸上,且∠BDO=∠BAC,求點(diǎn)D的坐標(biāo);

(3)點(diǎn)M在拋物線上,點(diǎn)N在拋物線的對(duì)稱軸上,是否存在以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校七年級(jí)學(xué)生乘車去參加社會(huì)實(shí)踐話動(dòng),若每輛客車乘50人,還有12人不能上車;若每輛客車乘55人,則最后一輛空了8個(gè)座位,求該校租了多少輛客車?七年級(jí)學(xué)生多少人?

根據(jù)題意,小明、小紅分別列出了尚不完整的方程如下:

小明:50x    ;小紅:

(其中表示運(yùn)算符號(hào),  表示數(shù)字)

小明所列方程中x表示的意義是:______;小紅所列方程中y表示的意義是:______;

請(qǐng)你把小明或小紅所列方程補(bǔ)充完整,并相應(yīng)解答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°,得到平行四邊形ABCD′(點(diǎn)B′與點(diǎn)B是對(duì)應(yīng)點(diǎn),點(diǎn)C′與點(diǎn)C是對(duì)應(yīng)點(diǎn),點(diǎn)D′與點(diǎn)D是對(duì)應(yīng)點(diǎn)),點(diǎn)B′恰好落在BC邊上,則∠C的度數(shù)等于( 。

A. 100° B. 105° C. 115° D. 120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:對(duì)于一個(gè)有理數(shù)x,我們把[x]稱作x的對(duì)稱數(shù).

,則[x]=x-2:x<0,則[x]=x+2.例:[1]=1-2=-1,[-2]=-2+2=0

1)求[][-1]的值;

(2)已知有理數(shù)a>0.b<0,且滿足[a]=[b],試求代數(shù)式的值:

3)解方程:[2x]+[x+1]=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】方法感悟:

1)如圖①,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在邊BC、CD上分別存在點(diǎn)G、H,使得四邊形EFGH的周長(zhǎng)最。咳舸嬖,求出它周長(zhǎng)的最小值;若不存在,請(qǐng)說(shuō)明理由.

問(wèn)題解決:

2)如圖②,有一矩形板材ABCDAB=3米,AD=6米,現(xiàn)想從此板材中裁出一個(gè)面積盡可能大的四邊形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,經(jīng)研究,只有當(dāng)點(diǎn)E、FG分別在邊AD、AB、BC上,且AFBF,并滿足點(diǎn)H在矩形ABCD內(nèi)部或邊上時(shí),才有可能裁出符合要求的部件,試問(wèn)能否裁得符合要求的面積盡可能大的四邊形EFGH部件?若能,求出裁得的四邊形EFGH部件的面積,并寫出在以B為坐標(biāo)原點(diǎn),直線BCx軸,直線BAy軸的坐標(biāo)系中,點(diǎn)H的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案