【題目】如圖,在ABCD中,AB=6,BC=10,ABAC,點P從點B出發(fā)沿著B→A→C的路徑運動,同時點Q從點A出發(fā)沿著A→C→D的路徑以相同的速度運動,當點P到達點C時,點Q隨之停止運動,設點P運動的路程為x,y=PQ2,下列圖象中大致反映yx之間的函數(shù)關系的是(  )

A. B.

C. D.

【答案】B

【解析】先利用勾股定理求出AC長,然后分三種情況分別求出yx間的關系式即可進行判斷. 三種情況是:①0≤x≤6 ,6≤x≤8 ,8≤x≤14.

RtABC中,∠BAC=90°,AB=6,BC=10,AC==8,

0≤x≤6時,AP=6﹣x,AQ=x,y=PQ2=AP2+AQ2=2x2﹣12x+36;

6≤x≤8時,AP=x﹣6,AQ=x,y=PQ2=(AQ﹣AP)2=36;

8≤x≤14時,CP=14﹣x,CQ=x﹣8,y=PQ2=CP2+CQ2=2x2﹣44x+260,

故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某市2012年國民經濟和社會發(fā)展統(tǒng)計公報顯示,2012年該市新開工的住房有商品房、廉租房、經濟適用房和公共租賃房四種類型.老王對這四種新開工的住房套數(shù)和比例進行了統(tǒng)計,并將統(tǒng)計結果繪制成下面兩幅統(tǒng)計圖,請你結合圖中所給信息解答下列問題:

1)求經濟適用房的套數(shù),并補全圖1

2)假如申請購買經濟適用房的對象中共有950人符合購買條件,老王是其中之一.由于購買人數(shù)超過房子套數(shù),購買者必須通過電腦搖號產生.如果對2012年新開工的經濟適用房進行電腦搖號,那么老王被搖中的概率是多少?

3)如果計劃2014年新開工廉租房建設的套數(shù)要達到720套,那么20132014這兩年新開工廉租房的套數(shù)的年平均增長率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中 過點A作AEDC,垂足為E,連接BE,F(xiàn)為BE上一點,且AFE=D.

(1)求證:ABF∽△BEC;

(2)若AD=5,AB=8,sinD=,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的頂點A,Bx軸的正半軸上,反比例函數(shù)y=在第一象限內的圖象與直線y=x交于點D,且反比例函數(shù)y=BC于點E,AD=3

1)求D點的坐標及反比例函數(shù)的關系式;

2)若矩形的面積是24,請寫出CDE的面積(不需要寫解答過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一坐標系中,二次函數(shù)與一次函數(shù)的圖像可能是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知拋物線y=﹣x2+bx+cx軸交于A(﹣1,0),B(3,0)兩點,與y軸交于C點,點P是拋物線上在第一象限內的一個動點,且點P的橫坐標為t.

(1)求拋物線的表達式;

(2)設拋物線的對稱軸為l,lx軸的交點為D.在直線l上是否存在點M,使得四邊形CDPM是平行四邊形?若存在,求出點M的坐標;若不存在,請說明理由.

(3)如圖2,連接BC,PB,PC,設PBC的面積為S.

①求S關于t的函數(shù)表達式;

②求P點到直線BC的距離的最大值,并求出此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學課外活動小組準備圍建一個矩形生物苗圃園,其中一邊靠墻,另外三邊用長為30米的籬笆圍成。已知墻長為18(如圖所示),設這個苗圃園垂直于墻的一邊的長為x.

(1)若平行于墻的一邊長為y米,直接寫出yx的函數(shù)關系式及其自變量x的取值范圍.

(2)垂直于墻的一邊的長為多少米時,這個苗圃園的面積最大,并求出這個最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】.已知:在矩形中,是對角線,于點于點;

1)如圖1,求證:;

2)如圖2,當時,連接.,在不添加任何輔助線的情況下,請直接寫出圖2中四個三角形,使寫出的每個三角形的面積都等于矩形面積的.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】教育部基礎教育司負責人解讀“2020新中考時強調要注重學生分析與解決問題的能力,要增強學生的創(chuàng)新精神和綜合素質.王老師想嘗試改變教學方法,將以往教會學生做題改為引導學生會學習.于是她在菱形的學習中,引導同學們解決菱形中的一個問題時,采用了以下過程(請解決王老師提出的問題):

先出示問題(1:如圖1,在等邊三角形中,上一點,上一點,如果,連接、,相交于點,求的度數(shù).

通過學習,王老師請同學們說說自己的收獲.小明說發(fā)現(xiàn)一個結論:在這個等邊三角形中,只要滿足,則的度數(shù)就是一個定值,不會發(fā)生改變.緊接著王老師出示了問題(2:如圖2,在菱形中,,上一點,上一點,,連接、、相交于點,如果,求出菱形的邊長.

問題(3):通過以上的學習請寫出你得到的啟示(一條即可).

查看答案和解析>>

同步練習冊答案