【題目】下列命題:①對頂角相等;②同位角相等,兩直線平行;③若|a|=|b|,則a=b;④若x=2,則2|x|-1=3.以上命題是真命題的有(   ).

A. ①②③④ B. ①④ C. ②④ D. ①②④

【答案】D

【解析】

對于①, 根據(jù)對頂角的性質(zhì)即可判斷命題正誤;

對于②, 根據(jù)平行線的判定定理判斷命題的正誤;

對于③, 根據(jù)絕對值的性質(zhì)知a=b, 據(jù)此判斷命題③的正誤;

對于④, x=2代入2|x|-1可得2|x|-1=3, 據(jù)此判斷命題的正誤, 綜上可選出正確答案.

解:對于①,由對頂角的性質(zhì)知,對頂角相等,故命題①為真命題;

對于②,同位角相等,兩直線平行,故命題②為真命題;

對于③,如果|a|=|b|,a=b,故命題③為假命題;

對于④, 若x=2,則2|x|-1=3,故④為真命題.

綜上可知, 命題是真命題的有①②④.

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在升旗結(jié)束后,小銘想利用所學(xué)數(shù)學(xué)知識測量學(xué)校旗桿高度,如圖,旗桿的頂端垂下一繩子,將繩子拉直釘在地上,末端恰好至C處且與地面成60°角,小銘從繩子末端C處拿起繩子后退至E點,求旗桿AB的高度和小銘后退的距離.(單位:米,參考數(shù)據(jù):≈1.41,≈1.73,結(jié)果保留一位小數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上三點M,O,N對應(yīng)的數(shù)分別為-30,1,點P為數(shù)軸上任意一點,其對應(yīng)的數(shù)為x

1)如果點P到點M,點N的距離相等,那么x的值是______________;

2)數(shù)軸上是否存在點P,使點P到點M,點N的距離之和是5?若存在,請直接寫出x的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一幅三角板拼成如圖所示的圖形,過點CCF平分∠DCEDE于點F

1)求證:CF∥AB

2)求∠DFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB=90°,∠BOC=30°,OM平分∠AOCON平分∠BOC

1)求∠MON的度數(shù);

2)若題干中的∠AOB=,其他條件不變,求∠MON的度數(shù);

3)若題干中的∠BOC=(為銳角),其他條件不變,求∠MON的度數(shù);

4)綜合(1)(2)(3)的結(jié)果,你能得出什么結(jié)論?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC沿直線l向右移了3厘米,得FDE,且BC6厘米,∠B40°.

(1)BE;

(2)求∠FDB的度數(shù);

(3)找出圖中相等的線段(不另添加線段);

(4)找出圖中互相平行的線段(不另添加線段)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知∠AOB90°,∠BOC20°,OM平分∠AOC,ON平分∠BOC;

1)求∠MON;

2)∠AOB=α,∠BOC=β,求∠MON的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市居民用水實行階梯水價,實施細則如下表:

分檔水量

年用水量 (立方米)

水價 (/立方米)

第一階梯

0~180()

5.00

第二階梯

181~260()

7.00

第三階梯

260以上

9.00

例如,某戶家庭年使用自來水200 m3,應(yīng)繳納:180×5+(200-180)×7=1040元;

某戶家庭年使用自來水300 m3,應(yīng)繳納:180×5+(260-180)×7+(300-260)×9=1820元.

(1)小剛家2017年共使用自來水170 m3,應(yīng)繳納 元;小剛家2018年共使用自來水260 m3,應(yīng)繳納 元.

(2)小強家2018年使用自來水共繳納1180元,他家2018年共使用了多少自來水?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的圖象過點M(﹣2, ),頂點坐標為N(﹣1, ),且與x軸交于A、B兩點,與y軸交于C點.

(1)求拋物線的解析式;
(2)點P為拋物線對稱軸上的動點,當△PBC為等腰三角形時,求點P的坐標;
(3)在直線AC上是否存在一點Q,使△QBM的周長最?若存在,求出Q點坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案