【題目】如圖,拋物線y=ax2+bx+c(a≠0)的圖象過點M(﹣2, ),頂點坐標為N(﹣1, ),且與x軸交于A、B兩點,與y軸交于C點.
(1)求拋物線的解析式;
(2)點P為拋物線對稱軸上的動點,當△PBC為等腰三角形時,求點P的坐標;
(3)在直線AC上是否存在一點Q,使△QBM的周長最小?若存在,求出Q點坐標;若不存在,請說明理由.
【答案】
(1)
解:由拋物線頂點坐標為N(﹣1, ),可設其解析式為y=a(x+1)2+ ,
將M(﹣2, )代入,得 =a(﹣2+1)2+ ,
解得a=﹣ ,
故所求拋物線的解析式為y=﹣ x2﹣ x+
(2)
解:∵y=﹣ x2﹣ x+ ,
∴x=0時,y= ,
∴C(0, ).
y=0時,﹣ x2﹣ x+ =0,
解得x=1或x=﹣3,
∴A(1,0),B(﹣3,0),
∴BC= =2 .
設P(﹣1,m),
當CP=CB時,有CP= =2 ,解得m= ± ;
當BP=BC時,有BP= =2 ,解得m=±2 ;
當PB=PC時, = ,解得m=0,
綜上,當△PBC為等腰三角形時,點P的坐標為(﹣1, + ),(﹣1, ﹣ ),(﹣1,2 ),(﹣1,﹣2 ),(﹣1,0)
(3)
解:由(2)知BC=2 ,AC=2,AB=4,
所以BC2+AC2=AB2,即BC⊥AC.
連結BC并延長至B′,使B′C=BC,連結B′M,交直線AC于點Q,
∵B、B′關于直線AC對稱,
∴QB=QB′,
∴QB+QM=QB′+QM=MB′,
所以此時△QBM的周長最。
由B(﹣3,0),C(0, ),易得B′(3,2 ).
設直線MB′的解析式為y=kx+n,
將M(﹣2, ),B′(3,2 )代入,
得 ,解得 ,
即直線MB′的解析式為y= x+ .
同理可求得直線AC的解析式為y=﹣ x+ .
由 ,解得 ,即Q(﹣ , ).
所以在直線AC上存在一點Q(﹣ , ),使△QBM的周長最小.
【解析】(1)先由拋物線的頂點坐標為N(﹣1, ),可設其解析式為y=a(x+1)2+ ,再將M(﹣2, )代入,得 =a(﹣2+1)2+ ,解方程求出a的值即可得到拋物線的解析式;(2)先求出拋物線y=﹣ x2﹣ x+ 與x軸交點A、B,與y軸交點C的坐標,再根據勾股定理得到BC= =2 .設P(﹣1,m),當△PBC為等腰三角形時分三種情況進行討論:①CP=CB;②BP=BC;③PB=PC;(3)先由勾股定理的逆定理得出BC⊥AC,連結BC并延長至B′,使B′C=BC,連結B′M,交直線AC于點Q,由軸對稱的性質可知此時△QBM的周長最小,由B(﹣3,0),C(0, ),根據中點坐標公式求出B′(3,2 ),再運用待定系數法求出直線MB′的解析式為y= x+ ,直線AC的解析式為y=﹣ x+ ,然后解方程組 ,即可求出Q點的坐標.
【考點精析】認真審題,首先需要了解二次函數的性質(增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小).
科目:初中數學 來源: 題型:
【題目】下列命題:①對頂角相等;②同位角相等,兩直線平行;③若|a|=|b|,則a=b;④若x=2,則2|x|-1=3.以上命題是真命題的有( ).
A. ①②③④ B. ①④ C. ②④ D. ①②④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AD∥BC,∠A=90°,E是AB上的一點,且AD=BE,∠1=∠2.
(1)求證:△ADE≌△BEC;
(2)若AD=6,AB=14,請求出CD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=120,AD⊥BC,且AD=AB.
(1)如圖1,DE⊥AB,DF⊥AC,垂足分別為點E,F,求證:AE+AF=AD
(2)如圖2,如果∠EDF=60,且∠EDF兩邊分別交邊AB,AC于點E,F,那么線段AE,AF,AD之間有怎樣的數量關系?并給出證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定這個四邊形是平行四邊形的是
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點F,交BC的延長線于點E.
(1)求證:BE=CD;
(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】體考在即,初三(1)班的課題研究小組對本年級530名學生的體育達標情況進行調查,制作出如圖所示的統(tǒng)計圖,其中1班有50人.(注:30分以上為達標,滿分50分)根據統(tǒng)計圖,解答下面問題:
(1)初三(1)班學生體育達標率和本年級其余各班學生體育達標率各是多少?
(2)若除初三(1)班外其余班級學生體育考試成績在30﹣﹣40分的有120人,請補全扇形統(tǒng)計圖;(注:請在圖中分數段所對應的圓心角的度數)
(3)如果要求全年級學生的體育達標率不低于90%,試問在本次調查中,該年級全體學生的體育達標率是否符合要求?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y1=x2﹣1交x軸的正半軸于點A,交y軸于點B,將此拋物線向右平移4個單位得拋物線y2 , 兩條拋物線相交于點C.
(1)請直接寫出拋物線y2的解析式;
(2)若點P是x軸上一動點,且滿足∠CPA=∠OBA,求出所有滿足條件的P點坐標;
(3)在第四象限內拋物線y2上,是否存在點Q,使得△QOC中OC邊上的高h有最大值?若存在,請求出點Q的坐標及h的最大值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com