【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時出發(fā),設(shè)慢車行駛的時間為xh),兩車之間的距離為ykm),圖中折線表示yx之間的函數(shù)關(guān)系,根據(jù)圖象進行以下探究:

信息獲取:

1)甲、乙兩地之間的距離為   km

2)請解釋圖中點B的實際意義;圖象理解: .

3)求慢車和快車的速度;

4)求出C點的坐標(biāo).

(第(3)、(4)問要求寫出求解過程).

【答案】(1)450;(2)B的實際意義甲乙距離為零,即甲乙相遇;(3)慢車和快車的速度分別為:75150km/h);

4)點C3,150).

【解析】

1x0時,y450,即可求解;

2B的實際意義甲乙距離為零,即甲乙相遇;

3)點D表示,慢車到達甲地,即可求解;

4)點C表示快車到達終點站,即可求解.

解:(1x0時,y450,故答案為450;

2B的實際意義甲乙距離為零,即甲乙相遇;

3)點D表示,慢車到達甲地,故慢車的速度為:450÷675;

甲乙在點B相遇,設(shè)快車的速度為:m,則(m+75×2450

解得:m150;

故慢車和快車的速度分別為:75150km/h);

4)點C表示快車到達終點站,快車用的時間為:450÷1503

即相遇后走了1小時,即150km,

故點C3150).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=的圖象交于A(2,3),B(6,n)兩點.

(1)分別求出一次函數(shù)與反比例函數(shù)的解析式;

(2)求OAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(2,4),B(﹣4,n)兩點.

(1)分別求出一次函數(shù)與反比例函數(shù)的表達式;

(2)過點BBCx軸,垂足為點C,連接AC,求ACB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進一種商品,每件商品進價30元試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)

與每件銷售價x(元)的關(guān)系數(shù)據(jù)如下:

x

30

32

34

36

y

40

36

32

28

(1)已知y與x滿足一次函數(shù)關(guān)系,根據(jù)上表,求出y與x之間的關(guān)系式(不寫出自變量x的取值范圍);

(2)如果商店銷售這種商品,每天要獲得150元利潤,那么每件商品的銷售價應(yīng)定為多少元?

(3)設(shè)該商店每天銷售這種商品所獲利潤為w(元),求出w與x之間的關(guān)系式,并求出每件商品銷售價定為多少元時利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)符合一次函數(shù)y=kx+b,且x=65時,y=55x=75時,y=45

1)求一次函數(shù)y=kx+b的表達式;

2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價x之間的關(guān)系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】家用電滅蚊器的發(fā)熱部分使用了PTC發(fā)熱材料,它的電阻R(kΩ)隨溫度t(℃)(在一定范圍內(nèi))變化的大致圖象如圖所示.通電后,發(fā)熱材料的溫度在由室溫10℃上升到30℃的過程中,電阻與溫度成反例關(guān)系,且在溫度達到30℃時,電阻下降到最小值;隨后電阻承溫度升高而增加,溫度每上升1℃,電阻增加kΩ.

(1)求Rt之間的關(guān)系式;

(2)家用電滅蚊器在使用過程中,溫度在什么范圍內(nèi)時,發(fā)熱材料的電阻不超過4kΩ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC,∠C=90°,ACBC,若DBC上一點,且到AB兩點距離相等.

1)利用尺規(guī),作出點D的位置(不寫作法,保留作圖痕跡);

2)連結(jié)AD,若AB=5,AC=3,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為美化校園環(huán)境,某校計劃在一塊長為60米,寬為40米的長方形空地上修建一個長方形花圃,并將花圃四周余下的空地修建成同樣寬的通道,設(shè)通道寬為米.

(1)如果通道所占面積是整個長方形空地面積的,求出此時通道的寬;

(2)能否設(shè)計出符合題目要求,且長方形花圃的形狀與原長方形空地的形狀相似的花圃?若能,求出此時通道的寬;若不能,則說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D BAC 的外角平分線上一點并且滿足 BDCD D DEAC E,DFAB BA 的延長線于 F,則下列結(jié)論:①△CDE≌△BDFCEAB+AE;③∠BDCBAC;④∠DAFCBD.其中正確的結(jié)論有______

查看答案和解析>>

同步練習(xí)冊答案