【題目】家用電滅蚊器的發(fā)熱部分使用了PTC發(fā)熱材料,它的電阻R(kΩ)隨溫度t(℃)(在一定范圍內)變化的大致圖象如圖所示.通電后,發(fā)熱材料的溫度在由室溫10℃上升到30℃的過程中,電阻與溫度成反例關系,且在溫度達到30℃時,電阻下降到最小值;隨后電阻承溫度升高而增加,溫度每上升1℃,電阻增加kΩ.
(1)求R和t之間的關系式;
(2)家用電滅蚊器在使用過程中,溫度在什么范圍內時,發(fā)熱材料的電阻不超過4kΩ.
【答案】(1)見解析;(2)15℃~37.5℃
【解析】
(1)當10≤t≤30時,是反比例函數(shù),利用待定系數(shù)法可求出解析式,然后將t=30℃代入關系式求出此時的R值,然后再根據題意列式即可求出t>30時的函數(shù)關系式;
(2)將R=4代入(1)中求得的兩個解析式即可求得答案.
(1)∵溫度在由室溫10℃上升到30℃的過程中,電阻與溫度成反比例關系,
∴當10≤t≤30時,設關系為R=,
將(10,6)代入上式中得:6=,解得k=60,
故當10≤t≤30時,R=;
將t=30℃代入上式中得:R==2,
∴溫度在30℃時,電阻R=2(kΩ),
∵在溫度達到30℃時,電阻下降到最小值,隨后電阻隨溫度升高而增加,溫度每上升1℃,電阻增加kΩ,
∴當t≥30時,R=2+(t﹣30)=t﹣6,
故R和t之間的關系式為R= ;
(2)把R=4代入R=t﹣6,得t=37.5,
把R=4代入R=,得t=15,
所以,溫度在15℃~37.5℃時,發(fā)熱材料的電阻不超過4kΩ.
科目:初中數(shù)學 來源: 題型:
【題目】定義:平面內的直線l1與l2相交于點O,對于該平面內任意一點M,點M到直線l1、l2的距離分別為a、b,則稱有序非負實數(shù)對(a,b)是點M的“距離坐標”,根據上述定義,距離坐標為(2,1)的點的個數(shù)有( 。
A. 2個B. 3個C. 4個D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖①,圖②都是由四條邊長均為1的小四邊形構成的網格,每個小四邊形的頂點稱為格點.點O,M,N,A,B均在格點上,請僅用無刻度直尺在網格中完成下列畫圖(保留連線痕跡).
(1)在圖①中,畫出△OMP≌△ONP,要求點P在格點上.
(2)在圖②中,畫一個Rt△ABC,∠ACB=90°,要求點C在格點上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,對角線AC、BD相交于點O,BD=2AD,E、F、G分別是OC、OD、AB的中點,下列結論:①∠OBE=∠ADO;②EG=EF;③GF平分∠AGE;④EF⊥GE,其中正確的是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網格中,每個小正方形的邊長為1個單位長度.平面直角坐標系xOy的原點O在格點上,x軸、y軸都在格線上.線段AB的兩個端點也在格點上.
(1)若將線段AB繞點O逆時針旋轉90°得到線段A1B1,試在圖中畫出線段A1B1.
(2)若線段A2B2與線段A1B1關于y軸對稱,請畫出線段A2B2.
(3)若點P是此平面直角坐標系內的一點,當點A、B1、B2、P四邊圍成的四邊形為平行四邊形時,請你直接寫出點P的坐標(寫出一個即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:四邊形ABCD是一張矩形紙片,AB=3cm,BC=5cm
(1)在矩形ABCD的邊AD上找一點E,使CE平分∠BED,請利用刻度尺或圓規(guī)作出點E,寫出作法,并給出證明;
(2)把矩形紙片沿某直線剪一刀分成兩部分后,再用這兩部分拼成一個菱形,請畫出剪拼的示意圖,并求出菱形的較長對角線的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A(1,a)是反比例函數(shù)的圖象上一點,直線與反比例函數(shù)的圖象的交點為點B、D,且B(3,﹣1),求:
(1)求反比例函數(shù)的解析式;
(2)求點D坐標,并直接寫出y1>y2時x的取值范圍;
(3)動點P(x,0)在x軸的正半軸上運動,當線段PA與線段PB之差達到最大時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘 米,乙在A地時距地面的高度b為 米.
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關系式.
(3)登山多長時間時,甲、乙兩人距地面的高度差為50米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,∠AOB=30°,點M為射線OB上一點,平面內有一點P使∠PAM=150°且PA=AM.
(1)求證:∠OMA=∠OAP.
(2)如圖2,若射線OB上有一點Q使∠POA=∠AQO,求證:OP=AQ.
(3)如圖3,在(2)的條件下,過A作AH⊥OB,且OH=AH,已知N點為MQ的中點,且ON=,則OA=____________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com