【題目】已知如圖,直線EF與AB、CD分別相交于點E、F.
(1)如圖1,若∠1=120°,∠2=60°,求證AB∥CD;
(2)在(1)的情況下,若點P是平面內的一個動點,連結PE、PF,探索∠EPF、∠PEB、∠PFD三個角之間的關系;
①當點P在圖2的位置時,可得∠EPF=∠PEB+∠PFD;
請閱讀下面的解答過程,并填空(理由或數學式)
解:如圖2,過點P作MN∥AB,
則∠EPM=∠PEB_____.
∵AB∥CD(已知),MN∥AB(作圖)
∴MN∥CD_____.
∴∠MPF=∠PFD
∴∠_____+∠_____=∠PEB+∠PFD(等式的性質)
即∠EPF=∠PEB+∠PFD
②當點P在圖3的位置時,∠EPF、∠PEB、∠PFD三個角之間有何關系并證明.
③當點P在圖4的位置時,請直接寫出∠EPF、∠PEB、∠PFD三個角之間的關系:_____.
【答案】兩直線平行,內錯角相等如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行∠EPM∠MPF∠EPF+∠PFD=∠PEB
【解析】
(1)根據對頂角相等可得∠BEF的度數,根據同旁內角互補,兩直線平行,即可得出結論;
(2)①過點P作MN∥AB,根據平行線的性質得∠EPM=∠PEB,且有MN∥CD,所以∠MPF=∠PFD,然后利用等式性質易得∠EPF=∠PEB+∠PFD.
②③的解題方法與①一樣,分別過點P作MN∥AB,然后利用平行線的性質得到三個角之間的關系.
(1)∵∠1=120°,
∴∠BEF=120°,
又∵∠2=60°,
∴∠2+∠BEF=180°,
∴AB∥CD;
(2)①如圖2,過點P作MN∥AB,則∠EPM=∠PEB(兩直線平行,內錯角相等).
∵AB∥CD(已知),MN∥AB(作圖),
∴MN∥CD(平行于同一條直線的兩條直線互相平行).
∴∠MPF=∠PFD,
∴∠EPM+∠FPM=∠PEB+∠PFD(等式的性質),
即∠EPF=∠PEB+∠PFD,
故答案為:兩直線平行,內錯角相等;平行于同一條直線的兩條直線互相平行;∠EPM,∠MPF;
②∠EPF+∠PEB+∠PFD=360°;
證明:如圖3,過作PM∥AB,
∵AB∥CD,MP∥AB,
∴MP∥CD,
∴∠BEP+∠EPM=180°,∠DFP+∠FPM=180°,
∴∠BEP+∠EPM+∠FPM+∠PFD=360°,
即∠EPF+∠PEB+∠PFD=360°;
③∠EPF+∠PFD=∠PEB.
理由:如圖4,過作PM∥AB,
∵AB∥CD,MP∥AB,
∴MP∥CD,
∴∠PEB=∠MPE,∠PFD=∠MPF,
∵∠EPF+∠FPM=∠MPE,
∴∠EPF+∠PFD=∠PEB.
科目:初中數學 來源: 題型:
【題目】某汽車專買店銷售A,B兩種型號的新能源汽車,上周售出1輛A型車和3輛B型車,銷售額為96萬元;本周已售出2輛A型車和1輛B型車,銷售額為62萬元.
(1)求每輛A型車和B型車的件價各為多少萬元;
每輛A型車和B型車的售價分別是x萬元,y萬元.
根據題意,列方程組
解這個方程組,得x= ,y=
答: .
(2)有一家公司擬向該店購買A,B兩種型號的新能源汽車共6輛,購車費不超過130萬元,求這次購進B型車最多幾輛?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在直角坐標系中,已知點,,,a是的立方根,方程是關于x,y的二元一次方程,d為不等式組的最大整數解.
求點A、B、C的坐標;
如圖1,若D為y軸負半軸上的一個動點,當時,與的平分線交于M點,求的度數;
如圖2,若D為y軸負半軸上的一個動點,連BD交x軸于點E,問是否存在點D,使?若存在,請求出D的縱坐標的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,規(guī)定把一個點先繞原點逆時針旋轉45°,再作出它關于原點的對稱點稱為一次變換,已知點A的坐標為(﹣2,0),把點A經過連續(xù)2014次這樣的變換得到的點A2014的坐標是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結論:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0,其中正確的是(填編號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示表示王勇同學騎自行車離家的距離與時間之間的關系,王勇9點離開家,15點回家,請結合圖象,回答下列問題:
到達離家最遠的地方是什么時間?離家多遠?
他一共休息了幾次?休息時間最長的一次是多長時間?
在哪些時間段內,他騎車的速度最快?最快速度是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】水利部確定每年的3月22日至28日為“中國水周”(1994年以前為7月1日至7日),從1991年起,我國還將每年5月的第二周作為城市節(jié)約用水宣傳周.某社區(qū)為了進一步提高居民珍惜水、保護水和水憂患意識,提倡節(jié)約用水,從本社區(qū)5000戶家庭中隨機抽取100戶,調查他們家庭每月的平均用水量,并將調查的結果繪制成如下的兩幅不完整的統(tǒng)計圖表:
請根據上面的統(tǒng)計圖表,解答下列問題:
(1)在頻數分布表中:m= ,n= ;
(2)根據題中數據補全頻數直方圖;
(3)如果自來水公司將基本月用水量定為每戶每月12噸,不超過基本月用水量的部分享受基本價格,超出基本月用水量的部分實行加價收費,那么該社區(qū)用戶中約有多少戶家庭能夠全部享受基本價格?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,隧道的截面由拋物線AED和矩形ABCD構成,矩形的長BC為8m,寬AB為2m,以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標系(如圖1),y軸是拋物線的對稱軸,頂點E到坐標原點O的距離為6m.
(1)求拋物線的解析式;
(2)現(xiàn)有一輛貨運卡車,高4.4m,寬2.4m,它能通過該隧道嗎?
(3)如果該隧道內設雙向道(如圖2),為了安全起見,在隧道正中間設有0.4m的隔離帶,則該輛貨運卡車還能通過隧道嗎?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com