【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的8×10網(wǎng)格中,點(diǎn)A,B,C均為網(wǎng)格線的交點(diǎn).
(1)用無刻度的直尺作BC邊上的中線AD(不寫作法,保留作圖痕跡);
(2)①在給定的網(wǎng)格中,以A為位似中心將△ABC縮小為原來的,得到△AB′C′,請(qǐng)畫出△AB′C′.
②填空:tan∠AD′C'= .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,將點(diǎn)繞點(diǎn)逆時(shí)針旋轉(zhuǎn),點(diǎn)的對(duì)應(yīng)點(diǎn)為.的平分線交于,且.若點(diǎn)落在矩形的邊上,則的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為的直徑,直線于點(diǎn).點(diǎn)在上,分別連接,,且的延長(zhǎng)線交于點(diǎn),為的切線交于點(diǎn).
(1)求證:;
(2)連接,若,,求線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B在反比例函數(shù)y=(x>0)的圖象上,點(diǎn)C,D在反比例函數(shù)y=(k>0)的圖象上,AC∥BD∥y軸,已知點(diǎn)A,B的橫坐標(biāo)分別為1,2,△OAC與△ABD的面積之和為,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形中,,分別以所在的直線為軸、軸,建立如圖所示的平面直角坐標(biāo)系,連接,反比例函數(shù)的圖象經(jīng)過線段的中點(diǎn),并與矩形的兩邊交于點(diǎn)和點(diǎn),直線經(jīng)過點(diǎn)和點(diǎn).
(1)連接、,求的面積;
(2)如圖2,將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)—定角度,使得點(diǎn)的對(duì)應(yīng)點(diǎn)好落在軸的正半軸上,連接,作,點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCD中,AE⊥BC于點(diǎn)E,以點(diǎn)B為中心,取旋轉(zhuǎn)角等于∠ABC,把△BAE順時(shí)針旋轉(zhuǎn),得到△BA′E′,連接DA′.若∠ADC=60°,∠ADA′=50°,則∠DA′E′的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解七、八年級(jí)學(xué)生對(duì)“防溺水”安全知識(shí)的掌握情況,從七、八年級(jí)各隨機(jī)抽取50名學(xué)生進(jìn)行測(cè)試,并對(duì)成績(jī)(百分制)進(jìn)行整理、描述和分析.部分信息如下:
a.七年級(jí)成績(jī)頻數(shù)分布直方圖:
b.七年級(jí)成績(jī)?cè)?/span>這一組的是:70 72 74 75 76 76 77 77 77 78 79
c.七、八年級(jí)成績(jī)的平均數(shù)、中位數(shù)如下:
年級(jí) | 平均數(shù) | 中位數(shù) |
七 | 76.9 | m |
八 | 79.2 | 79.5 |
根據(jù)以上信息,回答下列問題:
(1)在這次測(cè)試中,七年級(jí)在80分以上(含80分)的有 人;
(2)表中m的值為 ;
(3)在這次測(cè)試中,七年級(jí)學(xué)生甲與八年級(jí)學(xué)生乙的成績(jī)都是78分,請(qǐng)判斷兩位學(xué)生在各自年級(jí)的排名誰更靠前,并說明理由;
(4)該校七年級(jí)學(xué)生有400人,假設(shè)全部參加此次測(cè)試,請(qǐng)估計(jì)七年級(jí)成績(jī)超過平均數(shù)76.9分的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:小胖同學(xué)遇到這樣一個(gè)問題,如圖1,在△ABC中,∠ABC=45°,AB=2,AD=AE,∠DAE=90°,CE=,求CD的長(zhǎng);
小胖經(jīng)過思考后,在CD上取點(diǎn)F使得∠DEF=∠ADB(如圖2),進(jìn)而得到∠EFD=45°,試圖構(gòu)建“一線三等角”圖形解決問題,于是他繼續(xù)分析,又意外發(fā)現(xiàn)△CEF∽△CDE.
(1)請(qǐng)按照小胖的思路完成這個(gè)題目的解答過程.
(2)參考小胖的解題思路解決下面的問題:
如圖3,在△ABC中,∠ACB=∠DAC=∠ABC,AD=AE,∠EAD+∠EBD=90°,求BE:ED.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平面直角坐標(biāo)系
(1)請(qǐng)?jiān)趫D中用描點(diǎn)法畫出二次函數(shù)y=-x2+2x+1的圖象;
(2)計(jì)算圖象與坐標(biāo)軸的交點(diǎn),頂點(diǎn)坐標(biāo),寫出對(duì)稱軸;
(3)指出當(dāng)x≤-3時(shí),y隨x的增大而增大還是y隨x的增大而減少;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com