【題目】如圖,線段AB=9,射線BG⊥AB,P為射線BG上一點,以AP為邊作正方形APCD,且C、D與點B在AP兩側(cè),在線段DP取一點E,使∠EAP=∠BAP,直線CE與線段AB相交于點F(點F與點A、B不重合).
(1)求證:△AEP≌△CEP;
(2)判斷CF與AB的位置關系,并說明理由;
(3)求△AEF的周長.
【答案】(1)詳見解析;(2)CF⊥AB,理由詳見解析;(3)18.
【解析】
(1)四邊形APCD正方形,則DP平分∠APC,PC=PA,∠APD=∠CPD=45°,即可求解;
(2)△AEP≌△CEP,則∠EAP=∠ECP,而∠EAP=∠BAP,則∠BAP=∠FCP,又∠FCP+∠CMP=90°,則∠AMF+∠PAB=90°即可求解;
(3)證明△PCN≌△APB(AAS),則 CN=PB=BF,PN=AB,即可求解.
(1)證明:∵四邊形APCD正方形,
∴DP平分∠APC,PC=PA,
∴∠APD=∠CPD=45°,
∴△AEP≌△CEP(SAS);
(2)CF⊥AB,理由如下:
∵△AEP≌△CEP,
∴∠EAP=∠ECP,
∵∠EAP=∠BAP,
∴∠BAP=∠FCP,
∵∠FCP+∠CMP=90°,∠AMF=∠CMP,
∴∠AMF+∠PAB=90°,
∴∠AFM=90°,
∴CF⊥AB;
(3)過點 C 作CN⊥PB.
∵CF⊥AB,BG⊥AB,
∴FC∥BN,
∴∠CPN=∠PCF=∠EAP=∠PAB,
又AP=CP,
∴△PCN≌△APB(AAS),
∴CN=PB=BF,PN=AB,
∵△AEP≌△CEP,
∴AE=CE,
∴AE+EF+AF
=CE+EF+AF
=BN+AF
=PN+PB+AF
=AB+CN+AF
=AB+BF+AF
=2AB
=18.
科目:初中數(shù)學 來源: 題型:
【題目】已知直線平行,直線分別截、于點、兩點.
(1)如圖①,有一動點在線段之間運動(不與E,F兩點重合),試探究、、的等量等關系?試說明理由.
(2)如圖②、③,當動點在線段之外運動(不與E,F兩點重合),問上述結(jié)論是否還成立?若不成立,試寫出新的結(jié)論并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們已經(jīng)知道,有一個內(nèi)角是直角的三角形是直角三角形.其中直角所在的兩條邊叫直角邊,直角所對的邊叫斜邊(如圖①所示).數(shù)學家已發(fā)現(xiàn)在一個直角三角形中,兩個直角邊邊長的平方和等于斜邊長的平方.如果設直角三角形的兩條直角邊長度分別是和,斜邊長度是,那么可以用數(shù)學語言表達:.
(1)在圖②,若,,則 ;
(2)觀察圖②,利用面積與代數(shù)恒等式的關系,試說明的正確性.其中兩個相同的直角三角形邊AE、EB在一條直線上;
(3)如圖③所示,折疊長方形ABCD的一邊AD,使點D落在BC邊的點F處,已知AB=8,BC=10,利用上面的結(jié)論求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)∠ABE=15°, ∠BAD=40°,求∠BED的度數(shù);
(2)若△ABC的面積為80,BD=16,求E到BC邊的距離為多少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E在□ABCD內(nèi)部,AF∥BE,DF∥CE.
(1)求證:△BCE≌△ADF;
(2)設□ABCD的面積為20,求四邊形AEDF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某青春黨支部在精準扶貧活動中,給結(jié)對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.
(1)求甲、乙兩種樹苗每棵的價格各是多少元?
(2)在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費用不超過1500元,那么他們最多可購買多少棵乙種樹苗?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某愛心企業(yè)在政府的支持下投入資金,準備修建一批室外簡易的足球場和籃球場,供市民免費使用,修建1個足球場和1個籃球場共需8.5萬元,修建2個足球場和4個籃球場共需27萬元.
(1)求修建一個足球場和一個籃球場各需多少萬元?
(2)該企業(yè)預計修建這樣的足球場和籃球場共20個,投入資金不超過90萬元,求至少可以修建多少個足球場?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在網(wǎng)格中,每個小正方形的邊長都為1,網(wǎng)格中有兩個格點、和直線,且長為3.6.
(1)求作點關于直線的對稱點.
(2)為直線上一動點,在圖中標出使的值最小的點,且求出的最小值?
(3)求周長的最小值?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C在以AB為半徑的半圓上,AB=8,∠CBA=30°,點D在線段AB上運動,點E與點D
關AC對稱,DF⊥DE于點D,并交EC的延長線與點F.下列結(jié)論:①CE=CF;②線段EF的最小值為2
③當AD=2時,EF與半圓相切;④當點D從點A運動到點B時,線段EF掃過的面積是16.其中正
確的結(jié)論()
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com