【題目】如圖,點(diǎn)C在以AB為半徑的半圓上,AB=8,∠CBA=30°,點(diǎn)D在線(xiàn)段AB上運(yùn)動(dòng),點(diǎn)E與點(diǎn)D
關(guān)AC對(duì)稱(chēng),DF⊥DE于點(diǎn)D,并交EC的延長(zhǎng)線(xiàn)與點(diǎn)F.下列結(jié)論:①CE=CF;②線(xiàn)段EF的最小值為2
③當(dāng)AD=2時(shí),EF與半圓相切;④當(dāng)點(diǎn)D從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),線(xiàn)段EF掃過(guò)的面積是16.其中正
確的結(jié)論()
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
【答案】C
【解析】
(1)由點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱(chēng)可得CE=CD,再根據(jù)DF⊥DE即可證到CE=CF.
(2)根據(jù)“點(diǎn)到直線(xiàn)之間,垂線(xiàn)段最短”可得CD⊥AB時(shí)CD最小,由于EF=2CD,求出CD的最小值就可求出EF的最小值.
(3)連接OC,易證△AOC是等邊三角形,AD=OD,根據(jù)等腰三角形的“三線(xiàn)合一”可求出∠ACD,進(jìn)而可求出∠ECO=90°,從而得到EF與半圓相切.
(4)利用相似三角形的判定與性質(zhì)可證到△DBF是等邊三角形,只需求出BF就可求出DB,進(jìn)而求出AD長(zhǎng).
(5)首先根據(jù)對(duì)稱(chēng)性確定線(xiàn)段EF掃過(guò)的圖形,然后探究出該圖形與△ABC的關(guān)系,就可求出線(xiàn)段EF掃過(guò)的面積.
接CD,如圖1所示.
∵點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱(chēng),
∴CE=CD.
∴∠E=∠CDE.
∵DF⊥DE,
∴∠EDF=90°.
∴∠E+∠F=90°,∠CDE+∠CDF=90°.
∴∠F=∠CDF.
∴CD=CF.
∴CE=CD=CF.
∴結(jié)論“CE=CF”正確.
②當(dāng)CD⊥AB時(shí),如圖2所示.
∵AB是半圓的直徑,
∴∠ACB=90°.
∵AB=8,∠CBA=30°,
∴∠CAB=60°,AC=4,BC=4.
∵CD⊥AB,∠CBA=30°,
∴CD=BC=2.
根據(jù)“點(diǎn)到直線(xiàn)之間,垂線(xiàn)段最短”可得:
點(diǎn)D在線(xiàn)段AB上運(yùn)動(dòng)時(shí),CD的最小值為2.
∵CE=CD=CF,
∴EF=2CD.
∴線(xiàn)段EF的最小值為4.
∴結(jié)論“線(xiàn)段EF的最小值為2”錯(cuò)誤.
③當(dāng)AD=2時(shí),連接OC,如圖3所示.
∵OA=OC,∠CAB=60°,
∴△OAC是等邊三角形.
∴CA=CO,∠ACO=60°.
∵AO=4,AD=2,
∴DO=2.
∴AD=DO.
∴∠ACD=∠OCD=30°.
∵點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱(chēng),
∴∠ECA=∠DCA.
∴∠ECA=30°.
∴∠ECO=90°.
∴OC⊥EF.
∵EF經(jīng)過(guò)半徑OC的外端,且OC⊥EF,
∴EF與半圓相切.
∴結(jié)論“EF與半圓相切”正確.
④當(dāng)點(diǎn)F恰好落在
上時(shí),連接FB、AF,如圖4所示
∵點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱(chēng),
∴ED⊥AC.
∴∠AGD=90°.
∴∠AGD=∠ACB.
∴ED∥BC.
∴△FHC∽△FDE.
∴ .
∵FC=EF,
∴FH=FD.
∴FH=DH.
∵DE∥BC,
∴∠FHC=∠FDE=90°.
∴BF=BD.
∴∠FBH=∠DBH=30°.
∴∠FBD=60°.
∵AB是半圓的直徑,
∴∠AFB=90°.
∴∠FAB=30°.
∴FB=AB=4.
∴DB=4.
∴AD=AB-DB=4.
∴結(jié)論“AD=2 ”錯(cuò)誤.
⑤如圖所示:
∵點(diǎn)D與點(diǎn)E關(guān)于AC對(duì)稱(chēng),
點(diǎn)D與點(diǎn)F關(guān)于BC對(duì)稱(chēng),
∴當(dāng)點(diǎn)D從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),
點(diǎn)E的運(yùn)動(dòng)路徑AM與AB關(guān)于AC對(duì)稱(chēng),
點(diǎn)F的運(yùn)動(dòng)路徑NB與AB關(guān)于BC對(duì)稱(chēng).
∴EF掃過(guò)的圖形就是圖5中陰影部分.
∴S陰影=2S△ABC
=2×ACBC
=ACBC
=4×4
=16.
∴EF掃過(guò)的面積為16.
∴結(jié)論“EF掃過(guò)的面積為16”正確.
所以①、③、⑤正確,共計(jì)3個(gè).
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線(xiàn)段AB=9,射線(xiàn)BG⊥AB,P為射線(xiàn)BG上一點(diǎn),以AP為邊作正方形APCD,且C、D與點(diǎn)B在AP兩側(cè),在線(xiàn)段DP取一點(diǎn)E,使∠EAP=∠BAP,直線(xiàn)CE與線(xiàn)段AB相交于點(diǎn)F(點(diǎn)F與點(diǎn)A、B不重合).
(1)求證:△AEP≌△CEP;
(2)判斷CF與AB的位置關(guān)系,并說(shuō)明理由;
(3)求△AEF的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F,若∠C=30°,DF=2,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1,是一個(gè)長(zhǎng)為,寬為的長(zhǎng)方形,沿圖中虛線(xiàn)用剪刀平均分成四塊小長(zhǎng)方形,然后按圖2的形狀拼成一個(gè)正方形.
(1)圖2中的陰影部分的面積為 ;
(2)觀察圖2,三個(gè)代數(shù)式,,之間的等量關(guān)系是 ;
(3)若,,求;
(4)觀察圖3,你能得到怎樣的代數(shù)恒等式呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【本小題滿(mǎn)分9分】某校組織了一次初三科技小制作比賽,有A、B、C、D四個(gè)班共提供了100件參賽作品.C班提供的參賽作品的獲獎(jiǎng)率為50%,其他幾個(gè)班的參賽作品情況及獲獎(jiǎng)情況繪制在下列圖①和圖②兩幅尚不完整的統(tǒng)計(jì)圖中.
(1)B班參賽作品有多少件?
(2)請(qǐng)你將圖②的統(tǒng)計(jì)圖補(bǔ)充完整;
(3)通過(guò)計(jì)算說(shuō)明,哪個(gè)班的獲獎(jiǎng)率高?
(4)將寫(xiě)有A、B、C、D四個(gè)字母的完全相同的卡片放人箱中,從中一次隨機(jī)抽出兩張卡片,求抽到A、B兩班的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CA,CD是⊙O的兩條切線(xiàn),切點(diǎn)分別為A,D,AB是⊙O的直徑.
⑴ 若∠C=50°,求∠BAD的度數(shù);
⑵ 若AB=AC=4,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=(x+m)2+m與直線(xiàn)y=x相交于E,C兩點(diǎn)(點(diǎn)E在點(diǎn)C的左邊),拋物線(xiàn)與x軸交
于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊).△ABC的外接圓⊙H與直線(xiàn)y=-x相交于點(diǎn)D.
⑴ 若拋物線(xiàn)與y軸交點(diǎn)坐標(biāo)為(0,2),求m的值;
⑵ 求證:⊙H與直線(xiàn)y=1相切;
⑶ 若DE=2EC,求⊙H的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017重慶A卷第11題)如圖,小王在長(zhǎng)江邊某瞭望臺(tái)D處,測(cè)得江面上的漁船A的俯角為40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡長(zhǎng)BC=10米,則此時(shí)AB的長(zhǎng)約為( 。▍⒖紨(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).
A. 5.1米 B. 6.3米 C. 7.1米 D. 9.2米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ABC ∠ACB ,BD 、CD 分別平分△ABC 的內(nèi)角 ∠ABC 、外角 ∠ACP ,BE平分外角 ∠MBC 交 DC 的延長(zhǎng)線(xiàn)于點(diǎn) E ,以下結(jié)論:①∠BDE ∠BAC ;② DB⊥BE ;③∠BDC ∠ACB 90 ;④∠BAC 2∠BEC 180 .其中正確的結(jié)論有( )
A.1 個(gè)B.2 個(gè)C.3 個(gè)D.4 個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com