【題目】我們已經(jīng)知道,有一個(gè)內(nèi)角是直角的三角形是直角三角形.其中直角所在的兩條邊叫直角邊,直角所對(duì)的邊叫斜邊(如圖①所示).數(shù)學(xué)家已發(fā)現(xiàn)在一個(gè)直角三角形中,兩個(gè)直角邊邊長的平方和等于斜邊長的平方.如果設(shè)直角三角形的兩條直角邊長度分別是和,斜邊長度是,那么可以用數(shù)學(xué)語言表達(dá):.
(1)在圖②,若,,則 ;
(2)觀察圖②,利用面積與代數(shù)恒等式的關(guān)系,試說明的正確性.其中兩個(gè)相同的直角三角形邊AE、EB在一條直線上;
(3)如圖③所示,折疊長方形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知AB=8,BC=10,利用上面的結(jié)論求EF的長.
【答案】(1)12; (2)答案見解析;(3)5
【解析】
試題
(1)利用題中所給公式:,代入即可解出的值;
(2)先用“梯形面積計(jì)算公式”計(jì)算出圖②的面積,再分別計(jì)算圖②中三個(gè)三角形的面積并相加得到圖②的面積,利用兩次所求面積相等得到等式,把等式變形即可得到公式:;
(3)由矩形和折疊的性質(zhì)可得:AF=AD=BC=10,DC=AB=8,EF=DE;在Rt△ABF中,由題中所給結(jié)論可計(jì)算出BF的長,從而可得FC的長;設(shè)EF=,則DE=,EC=,這樣在Rt△EFC中,由題中所給結(jié)論可得關(guān)于的方程,解方程即可求得EF的長.
試題解析:
(1)∵,代入,
∴;
(2)∵圖①的面積==,
圖①的面積=S梯形ABCD==,
∴ =,
∴ ,
即 .
(3)由四邊形ABCD是矩形和折疊的性質(zhì)可得,,,EF=DE,
由題意可得:在Rt△ABF中,,即,解得:,
又∵,
∴ ,
設(shè),則, ,
∵在Rt△ECF中,,
∴,
解得 ,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)有一塊四邊形的空地ABCD,如圖所示,為了綠化環(huán)境,學(xué)校計(jì)劃在空地上種植草皮,經(jīng)測(cè)量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.
(1)求出空地ABCD的面積.
(2)若每種植1平方米草皮需要200元,問總共需投入多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ACB中,∠ACB=90°,AC=BC,C點(diǎn)坐標(biāo)為(﹣3,0),A點(diǎn)坐標(biāo)為(﹣8,4),則B點(diǎn)的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),A、E、F、C在一條直線上,AE=CF,過E、F分別作DE⊥AC,BF⊥AC,若AB=CD,試證明BD平分EF,若將△DEC的邊EC沿AC方向移動(dòng)變?yōu)閳D(2)時(shí),其余條件不變,上述結(jié)論是否成立?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=5,BC=3,AC=4,以點(diǎn)C為圓心的圓與AB相切,則⊙C的半徑為( )
A.2.3
B.2.4
C.2.5
D.2.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)B在x軸的正半軸上,D(0,8),將矩形OBCD折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處.
(1)如圖①,已知折痕與邊BC交于點(diǎn)A,若OD=2CP,求點(diǎn)A的坐標(biāo).
(2)若圖①中的點(diǎn) P 恰好是CD邊的中點(diǎn),求∠AOB的度數(shù).
(3)如圖②,在(I)的條件下,擦去折痕AO,線段AP,連接BP,動(dòng)點(diǎn)M在線段OP上(點(diǎn)M與P,O不重合),動(dòng)點(diǎn)N在線段OB的延長線上,且BN=PM,連接MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E,試問當(dāng)點(diǎn)M,N在移動(dòng)過程中,線段EF的長度是否發(fā)生變化?若變化,說明理由;若不變,求出線段EF的長度(直接寫出結(jié)果即可
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(2 ,2)、B(2 ,1),將△AOB繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn),使點(diǎn)A旋轉(zhuǎn)到點(diǎn)A′(﹣2 ,2 )的位置,則圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】光明中學(xué)八年級(jí)甲、乙、丙三個(gè)班中,每班的學(xué)生人數(shù)都為40名,某次數(shù)學(xué)考試的成績統(tǒng)計(jì)如圖:(每組分?jǐn)?shù)含最小值,不含最大值)
丙班數(shù)學(xué)成績頻數(shù)統(tǒng)計(jì)表
分?jǐn)?shù) | 50~60 | 60~70 | 70~80 | 80~90 | 90~100 |
人數(shù) | 1 | 4 | 15 | 11 | 9 |
根據(jù)上圖及統(tǒng)計(jì)表提供的信息,則80~90分這一組人數(shù)最多的班是________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】⊙O是△ABC的外接圓,AB是直徑,過 的中點(diǎn)P作⊙O的直徑PG,與弦BC相交于點(diǎn)D,連接AG、CP、PB.
(1)如圖1,求證:AG=CP;
(2)如圖2,過點(diǎn)P作AB的垂線,垂足為點(diǎn)H,連接DH,求證:DH∥AG;
(3)如圖3,連接PA,延長HD分別與PA、PC相交于點(diǎn)K、F,已知FK=2,△ODH的面積為2 ,求AC的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com