【題目】直線y= x和直線y=﹣x+3所夾銳角為α,則sinα的值為(
A.
B.
C.
D.

【答案】A
【解析】解:如圖: 因為直線y= x和直線y=﹣x+3,
可得交點A的坐標為:(2,1),
可得點B的坐標為:(0,3),
所以可得:OA= ,AB= ,OB=3,
根據(jù)△ABC中三邊和角的關系:BC2=AB2+OA2﹣2OAABcosα,
可得:9=5+8﹣2× ×2 cosα,
解得:cosα= ,
則sinα= =
故選:A.
【考點精析】解答此題的關鍵在于理解解直角三角形的相關知識,掌握解直角三角形的依據(jù):①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校參加校園青春健身操比賽的16名運動員的身高如下表:

則該校16名運動員身高的平均數(shù)和中位數(shù)分別是(  )

A. 173 cm173 cm B. 174 cm,174 cm

C. 173 cm,174 cm D. 174 cm,175 cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】大學生小劉回鄉(xiāng)創(chuàng)辦小微企業(yè),初期購得原材料若干噸,每天生產(chǎn)相同件數(shù)的某種產(chǎn)品,單件產(chǎn)品所耗費的原材料相同.當生產(chǎn)6天后剩余原材料36噸,當生產(chǎn)10天后剩余原材料30噸.若剩余原材料數(shù)量小于或等于3噸,則需補充原材料以保證正常生產(chǎn).

1)求初期購得的原材料噸數(shù)與每天所耗費的原材料噸數(shù);

2)若生產(chǎn)16天后,根據(jù)市場需求每天產(chǎn)量提高20%,則最多再生產(chǎn)多少天后必須補充原材料?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(閱讀理解)

A、B、C為數(shù)軸上三點,如果點CA、B之間且到A的距離是點CB的距離3倍,那么我們就稱點C{ A,B }的奇點.

例如,如圖1,點A表示的數(shù)為﹣3,點B表示的數(shù)為1.表示0的點C到點A的距離是3,到點B的距離是1,那么點C{ A,B }的奇點;又如,表示﹣2的點D到點A的距離是1,到點B的距離是3,那么點D就不是{A,B }的奇點,但點D{B,A}的奇點.

(知識運用)

如圖2,M、N為數(shù)軸上兩點,點M所表示的數(shù)為﹣3,點N所表示的數(shù)為5.

(1)數(shù)   所表示的點是{ M,N}的奇點;數(shù)   所表示的點是{N,M}的奇點;

(2)如圖3,A、B為數(shù)軸上兩點,點A所表示的數(shù)為﹣50,點B所表示的數(shù)為30.現(xiàn)有一動點P從點B出發(fā)向左運動,到達點A停止.P點運動到數(shù)軸上的什么位置時,P、AB中恰有一個點為其余兩點的奇點?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對下列代數(shù)式作出解釋,其中不正確的是(

A. a-b:今年小明b歲,小明的爸爸a歲,小明比他爸爸。a-b)歲

B. a-b:今年小明b歲,小明的爸爸a歲,則小明出生時,他爸爸為(a-b)歲

C. ab:長方形的長為acm,寬為bcm,長方形的面積為ab

D. ab:三角形的一邊長為acm,這邊上的高為bcm,此三角形的面積為ab

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形ABCD的邊長為acm,E、F分別是BC、CD的中點,連接BF、DE,則圖中陰影部分的面積是cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD中,BD⊥AD,∠A=45°,E、F分別是AB,CD上的點,且BE=DF,連接EF交BD于O.

(1)求證:BO=DO;

(2)若EF⊥AB,延長EF交AD的延長線于G,當FG=1時,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB,CD都垂直于x軸,垂足分別為B,D,若A(6,3),C(2,1), 則△OCD與四邊形ABDC的面積比為(

A.1:2
B.1:3
C.1:4
D.1:8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有下列5個結(jié)論,①abc<0; ②2a+b=0;③b2﹣4ac<0;④a+b+c>0;⑤a﹣b+c<0.其中正確的結(jié)論有(填序號)

查看答案和解析>>

同步練習冊答案