【題目】如圖,AB,CD都垂直于x軸,垂足分別為B,D,若A(6,3),C(2,1), 則△OCD與四邊形ABDC的面積比為(

A.1:2
B.1:3
C.1:4
D.1:8

【答案】D
【解析】解:設OA所在直線為y=kx, 將點A(6,3)代入得:3=6k,
解得:k= ,
∴OA所在直線解析式為y= x,
當x=2時,y= ×2=1,
∴點C在線段OA上,
∵AB,CD都垂直于x軸,且CD=1、AB=3,
∴△OCD∽△OAB,
=( 2= ,
則△OCD與四邊形ABDC的面積比為1:8,
故選:D.
【考點精析】利用相似三角形的判定與性質對題目進行判斷即可得到答案,需要熟知相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在線段AB的同側作射線AM和BN,若∠MAB與∠NBA的平分線分別交射線BN,AM于點E,F(xiàn),AE和BF交于點P.如圖,點點同學發(fā)現(xiàn)當射線AM,BN交于點C;且∠ACB=60°時,有以下兩個結論:
①∠APB=120°;②AF+BE=AB.
那么,當AM∥BN時:

(1)點點發(fā)現(xiàn)的結論還成立嗎?若成立,請給予證明;若不成立,請求出∠APB的度數(shù),寫出AF,BE,AB長度之間的等量關系,并給予證明;
(2)設點Q為線段AE上一點,QB=5,若AF+BE=16,四邊形ABEF的面積為32 ,求AQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線y= x和直線y=﹣x+3所夾銳角為α,則sinα的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,E,F是對角線AC上的兩點,且AECF.下列結論:①BEDFBEDF;ABDE④四邊形EBFD為平行四邊形;⑤SADESABEAFCE.其中正確的個數(shù)是(  )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】4月的某天小欣在“A超市買了雀巢巧克力趣多多小餅干10包,已知雀巢巧克力每包22元,趣多多小餅干每包2元,總共花費了80元.

(1)請求出小欣在這次采購中,雀巢巧克力趣多多小餅干各買了多少包?

(2)“期間,小欣發(fā)現(xiàn),A、B兩超市以同樣的價格出售同樣的商品,并且又各自推出不同的優(yōu)惠方案:在A超市累計購物超過50元后,超過50元的部分打九折;在B超市累計購物超過100元后,超過100元的部分打八折.

①請問期間,若小欣購物金額超過100元,去哪家超市購物更劃算?

期間,小欣又到“B超市購買了一些雀巢巧克力,請問她至少購買多少包時,平均每包價格不超過20元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形OABC的面積為9,點O為左邊原點,點A軸上,點C軸上,點B在函數(shù)的圖象上,點P是函數(shù)圖象上的任意一點,過點P分別作軸、軸的垂線,垂足分別為E、F,并設矩形OEPF和正方形OABC不重合的部分(圖中陰影部分)的面積為S.

(1)求B點坐標和值;

(2)當時,求P點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個圓柱體的側面展開圖為長方形ABCD,若AB=6.28cm,BC=18.84cm,則該圓柱體的體積是多少?(π3.14,結果精確到十分位).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以AB為直徑的⊙O經(jīng)過點P,C是⊙O上一點,連接PC交AB于點E,且∠ACP=60°,PA=PD.
(1)試判斷PD與⊙O的位置關系,并說明理由;
(2)若 =1:2,求AE:EB:BD的值(請你直接寫出結果);
(3)若點C是弧AB的中點,已知AB=4,求CECP的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列圖形,尋找對頂角(不含平角).

(1)如圖①,圖中共有____對對頂角;

(2)如圖②,圖中共有____對對頂角;

(3)如圖③,圖中共有____對對頂角;

(4)研究(1)~(3)小題中直線條數(shù)與對頂角對數(shù)的關系,猜想:若有n條直線相交于一點,則共可形成__________對對頂角;

(5)若有180條直線相交于一點,則可形成________對對頂角.

查看答案和解析>>

同步練習冊答案