【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點(diǎn)C,與AB的延長(zhǎng)線交于點(diǎn)D,DE⊥AD且與AC的延長(zhǎng)線交于點(diǎn)E.
(1)求證:DC=DE;
(2)若tan∠CAB= ,AB=3,求BD的長(zhǎng).
【答案】
(1)證明:連接OC,
∵CD是⊙O的切線,
∴∠OCD=90°,
∴∠ACO+∠DCE=90°,
又∵ED⊥AD,
∴∠EDA=90°,
∴∠EAD+∠E=90°,
∵OC=OA,
∴∠ACO=∠EAD,
故∠DCE=∠E,
∴DC=DE
(2)解:設(shè)BD=x,則AD=AB+BD=3+x,OD=OB+BD=1.5+x,
在Rt△EAD中,∵tan∠CAB= ,
∴ED= AD= (3+x),由(1)知,DC= (3+x),
在Rt△OCD中, ,
則 ,
解得: (舍去), ,
故BD=1.
【解析】(1)抓住已知條件CD是⊙O的切線,因此連接OC得出∠OCD=90°,證得∠ACO+∠DCE=90°,再根據(jù)ED⊥AD,去證明∠EAD+∠E=90°,由OC=OA,得出∠ACO=∠EAD,根據(jù)等角的余角相等即可證得結(jié)論。
(2)設(shè)BD=x,由AB=3,求出OB的長(zhǎng),表示出OD的長(zhǎng),再在Rt△EAD中,由tan∠CAB的值,可表示出DE的長(zhǎng),即可得到DC的長(zhǎng),然后在Rt△OCD中,利用勾股定理建立關(guān)于x的方程,求解即可得出BD的長(zhǎng)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】魯能巴蜀中學(xué)2018年校藝術(shù)節(jié)“巴蜀好聲音”獨(dú)唱預(yù)選賽中,初二年級(jí)25名同學(xué)的成績(jī)滿分為10分統(tǒng)計(jì)如下:,,,,,,,,,,,,,,,,,,,,,,,,10
分及以上為A級(jí),分為B級(jí)包括分和分,分為C級(jí)包括分和分,分以下為D級(jí)請(qǐng)把下面表格補(bǔ)充完整;
等級(jí) | A | B | C | D |
人數(shù) | 4 | 8 |
級(jí)8位同學(xué)成績(jī)的中位數(shù)是多少,眾數(shù)是多少;
若成績(jī)?yōu)?/span>A級(jí)的同學(xué)將參加學(xué)校的匯演,請(qǐng)求出初二年級(jí)A級(jí)同學(xué)的平均成績(jī)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù) ,則下列結(jié)論不正確的是( )
A.圖象必經(jīng)過點(diǎn)(-1,5)
B.圖象的兩個(gè)分支分布在第二、四象限
C.y隨x的增大而增大
D.若x>1,則-5<y<0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將兩個(gè)完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作發(fā)現(xiàn)
如圖2,固定△ABC,使△DEC繞點(diǎn)C旋轉(zhuǎn),當(dāng)點(diǎn)D恰好落在AB邊上時(shí),填空:
①線段DE與AC的位置關(guān)系是;
②設(shè)△BDC的面積為S1 , △AEC的面積為S2 , 則S1與S2的數(shù)量關(guān)系是.
(2)猜想論證
當(dāng)△DEC繞點(diǎn)C旋轉(zhuǎn)到圖3所示的位置時(shí),小明猜想(1)中S1與S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC、CE邊上的高,請(qǐng)你證明小明的猜想.
(3)拓展探究
已知∠ABC=60°,點(diǎn)D是其角平分線上一點(diǎn),BD=CD=4,DE//AB交BC于點(diǎn)E(如圖4).若在射線BA上存在點(diǎn)F,使 ,請(qǐng)直接寫出相應(yīng)的BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中,且A、B、C.將其平移后得到,若A,B的對(duì)應(yīng)點(diǎn)是,,C的對(duì)應(yīng)點(diǎn)的坐標(biāo)是.
(1)在平面直角坐標(biāo)系中畫出△ABC;
(2)寫出點(diǎn)的坐標(biāo)是_____________,坐標(biāo)是___________;
(3)此次平移也可看作向________平移了____________個(gè)單位長(zhǎng)度,再向_______平移了______個(gè)單位長(zhǎng)度得到△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC,垂足為點(diǎn)F,連接DF,分析下列四個(gè)結(jié)論:
①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD= .
其中正確的結(jié)論有( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,有理數(shù)包括整數(shù)、有限小數(shù)和無限循環(huán)小數(shù),事實(shí)上,所有的有理數(shù)都可以化為分?jǐn)?shù)形式(整數(shù)可看作分母為1的分?jǐn)?shù)),那么無限循環(huán)小數(shù)如何表示為分?jǐn)?shù)形式呢?請(qǐng)看以下示例:
例:將化為分?jǐn)?shù)形式,
由于,設(shè),①
得,②
②①得,解得,于是得.
同理可得,.
根據(jù)以上閱讀,回答下列問題:(以下計(jì)算結(jié)果均用最簡(jiǎn)分?jǐn)?shù)表示)
(類比應(yīng)用)
(1) ;
(2)將化為分?jǐn)?shù)形式,寫出推導(dǎo)過程;
(遷移提升)
(3) , ;(注,)
(拓展發(fā)現(xiàn))
(4)若已知,則 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且OA=OC.則下列結(jié)論:①abc<0;② ;③ac-b+1=0;④OA·OB= .其中正確結(jié)論的個(gè)數(shù)是( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩同學(xué)用一副撲克牌中牌面數(shù)字分別是3,4,5,6的4張牌做抽數(shù)字游戲,游戲規(guī)則是:將這4張牌的正面全部朝下,洗勻,從中隨機(jī)抽取一張,抽得的數(shù)作為十位上的數(shù)字,抽出的牌不放回,然后將剩下的牌洗勻,再?gòu)闹须S機(jī)抽取一張,抽得的數(shù)作為個(gè)位上的數(shù)字,這樣就得到一個(gè)兩位數(shù),若這個(gè)兩位數(shù)小于45,則甲獲勝,否則乙獲勝.你認(rèn)為這個(gè)游戲公平嗎?請(qǐng)利用樹狀圖或列表法說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com