【題目】解方程
(1)x2﹣5x+6=0;
(2)x(x+5)=5x+25;
(3)2x2﹣3x﹣5=0;
(4)(x﹣1)2﹣(2x+3)2=0
【答案】(1)x1=2,x2=3;(2)x1=﹣5,x2=5;(3)x1=,x2=﹣1;(4)x1=﹣,x2=﹣4.
【解析】
(1)利用因式分解法求解即可;
(2)把右邊的項(xiàng)移至左邊,然后利用因式分解法求解即可;
(3)利用十字相乘法將左邊分解因式,利用因式分解法求解即可;
(4)左邊利用平方差公式分解,利用因式分解法求解即可.
解:(1)x2﹣5x+6=0,
(x﹣2)(x﹣3)=0,
x﹣2=0或x﹣3=0
∴x1=2,x2=3;
(2)x(x+5)﹣5(x+5)=0,
(x+5)(x﹣5)=0,
x+5=0或x﹣5=0,
∴x1=﹣5,x2=5;
(3)2x2﹣3x﹣5=0,
(2x﹣5)(x+1)=0,
2x﹣5=0或x+1=0
∴x1=,x2=﹣1;
(4)(x﹣1)2﹣(2x+3)2=0,
(x﹣1+2x+3)(x﹣1﹣2x﹣3)=0,
(3x+2)(x+4)=0,
3x+2=0或x+4=0,
∴x1=﹣,x2=﹣4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙M與x軸交于A、B兩點(diǎn),與y軸切于點(diǎn)C,且OA,OB的長是方程x2﹣4x+3=0的解.
(1)求M點(diǎn)的坐標(biāo).
(2)若P是⊙M上一個(gè)動(dòng)點(diǎn)(不包括A、B兩點(diǎn)),求∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)為籌備繽紛節(jié)財(cái)商體驗(yàn)活動(dòng),準(zhǔn)備在商店購入小商品A和B.已知A和B的單價(jià)和為25元,小明計(jì)劃購入A的數(shù)量比B的數(shù)量多3件,但一共不超過28件.現(xiàn)商店將A的單價(jià)提高20%,B打8折出售,小明決定將A、B的原定數(shù)量對調(diào),這樣實(shí)際花費(fèi)比原計(jì)劃少6元.已知調(diào)整前后的價(jià)格和數(shù)量均為整數(shù),求小明原計(jì)劃購買費(fèi)用為_____元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2-2x-3與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,其對稱軸與拋物線相交于點(diǎn)M,與x軸相交于點(diǎn)N,點(diǎn)P是線段MN上的一個(gè)動(dòng)點(diǎn),連接CP,過點(diǎn)P作PE⊥CP交x軸于點(diǎn)E.
(1)求拋物線的頂點(diǎn)M的坐標(biāo);
(2)當(dāng)點(diǎn)E與原點(diǎn)O的重合時(shí),求點(diǎn)P的坐標(biāo);
(3)求動(dòng)點(diǎn)E到拋物線對稱軸的最大距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點(diǎn)沿順時(shí)針方向旋轉(zhuǎn)得到△ADE,連接BD,CE交于點(diǎn)F.
(1)求證:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,當(dāng)四邊形ADFC是菱形時(shí),求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠A=30°,AC=8,O是AC的中點(diǎn),把Rt△ABC繞著點(diǎn)O旋轉(zhuǎn)得到Rt△A'B'C',使得點(diǎn)C的對應(yīng)點(diǎn)C'恰好落在AB上,則C,C'兩點(diǎn)間的距離是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△OAB中,∠OAB=90°,OA=AB=5,將△OAB繞點(diǎn)O沿逆時(shí)針方向旋轉(zhuǎn)90°得到△OA1B1.
(1)線段OA1的長是 ,∠AOB1的度數(shù)是 ;
(2)連接AA1,求證:四邊形OAA1B1是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一把直尺,的直角三角板和光盤如圖擺放,為角與直尺交點(diǎn),,則光盤的直徑是( )
A. 3 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸是直線x=﹣1,有以下結(jié)論:①abc<0;②2a﹣b=0;③4ac﹣b2<8a;④3a+c<0;⑤a﹣b<m(am+b),其中正確的結(jié)論的個(gè)數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com