【題目】如圖,一把直尺,的直角三角板和光盤如圖擺放,為角與直尺交點,,則光盤的直徑是( )
A. 3 B. C. D.
【答案】D
【解析】設光盤圓心為O,連接OC,OA,OB,由AC、AB都與圓O相切,利用切線長定理得到AO平分∠BAC,且OC垂直于AC,OB垂直于AB,可得出∠CAO=∠BAO=60°,得到∠AOB=30°,利用30°所對的直角邊等于斜邊的一半求出OA的長,再利用勾股定理求出OB的長,即可確定出光盤的直徑.
如圖,設光盤圓心為O,連接OC,OA,OB,
∵AC、AB都與圓O相切,
∴AO平分∠BAC,OC⊥AC,OB⊥AB,
∴∠CAO=∠BAO=60°,
∴∠AOB=30°,
在Rt△AOB中,AB=3cm,∠AOB=30°,
∴OA=6cm,
根據(jù)勾股定理得:OB=3,
則光盤的直徑為6,
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個粒子在第一象限內(nèi)及x軸,y軸上運動,第1分鐘從原點運動到,第2分鐘從運動到,而后它接著按圖中箭頭所示的與x軸y軸平行的方向來回運動,且每分鐘移動1個長度單位.在第2019分鐘時,這個粒子所在位置的坐標是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年8月1日,鄭州市物價局召開居民使用天然氣銷售價格新聞通氣會,宣布鄭州市天然氣價格調(diào)整方案如下:
一戶居民一個月天然氣用量的范圍 | 天然氣價格(單位:元/立方米) |
不超過50立方米 | 2.56 |
超過50立方米的部分 | 3.33 |
(1)若張老師家9月份使用天然氣36立方米,則需繳納天然氣費為______元;
(2)若張老師家10月份使用天然氣立方米,則需繳納的天然氣費為_______元;
(3)依此方案計算,若張老師家11月份實際繳納天然氣費201.26元,求張老師家11月份使用天然氣多少立方米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“推進全科閱讀,培育時代新人”.某學校為了更好地開展學生讀書活動,隨機調(diào)查了八年級50名學生最近一周的讀書時間,統(tǒng)計數(shù)據(jù)如下表:
時間(小時) | 6 | 7 | 8 | 9 | 10 |
人數(shù) | 5 | 8 | 12 | 15 | 10 |
(1)寫出這50名學生讀書時間的眾數(shù)、中位數(shù)、平均數(shù);
(2)根據(jù)上述表格補全下面的條形統(tǒng)計圖.
(3)學校欲從這50名學生中,隨機抽取1名學生參加上級部門組織的讀書活動,其中被抽到學生的讀書時間不少于9小時的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=6,AC=10,AD是BC邊上的中線,且AD=4,延長AD到點E,使DE=AD,連接CE.
(1)求證:△AEC是直角三角形.
(2)求BC邊的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是函數(shù)上兩點,為一動點,作軸,軸,下列說法正確的是( )
①;②;③若,則平分;④若,則
A. ①③ B. ②③ C. ②④ D. ③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】仔細想一想,完成下面的說理過程.
如圖,已知AB∥CD,∠B=∠D
求證:∠E=∠DFE.
證明:∵AB∥CD (已知 ),
∴∠B+∠ =180°( )
又∵∠B=∠D(已知 )
∴∠D +∠BCD=180°( )
∴ ( )
∴∠E=∠DFE( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】嘉嘉同學動手剪了如圖①所示的正方形與長方形卡片若干張.
(1)他用1張1號、1張2號和2張3號卡片拼出一個新的圖形(如圖②).根據(jù)這個圖形的面積關系寫出一個你所熟悉的乘法公式,這個乘法公式是________.
(2)如果要拼成一個長為(a+2b),寬為(a+b)的大長方形,則需要1號卡片________張,2號卡片________張,3號卡片________張.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】溫州某企業(yè)安排65名工人生產(chǎn)甲、乙兩種產(chǎn)品,每人每天生產(chǎn)2件甲或1件乙,甲產(chǎn)品每件可獲利15元.根據(jù)市場需求和生產(chǎn)經(jīng)驗,乙產(chǎn)品每天產(chǎn)量不少于5件,當每天生產(chǎn)5件時,每件可獲利120元,每增加1件,當天平均每件獲利減少2元.設每天安排x人生產(chǎn)乙產(chǎn)品.
(1)根據(jù)信息填表
產(chǎn)品種類 | 每天工人數(shù)(人) | 每天產(chǎn)量(件) | 每件產(chǎn)品可獲利潤(元) |
甲 | 15 | ||
乙 |
(2)若每天生產(chǎn)甲產(chǎn)品可獲得的利潤比生產(chǎn)乙產(chǎn)品可獲得的利潤多550元,求每件乙產(chǎn)品可獲得的利潤.
(3)該企業(yè)在不增加工人的情況下,增加生產(chǎn)丙產(chǎn)品,要求每天甲、丙兩種產(chǎn)品的產(chǎn)量相等.已知每人每天可生產(chǎn)1件丙(每人每天只能生產(chǎn)一件產(chǎn)品),丙產(chǎn)品每件可獲利30元,求每天生產(chǎn)三種產(chǎn)品可獲得的總利潤W(元)的最大值及相應的x值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com