【題目】如圖,已知△ABC中,ABAC,把△ABCA點(diǎn)沿順時(shí)針方向旋轉(zhuǎn)得到△ADE,連接BD,CE交于點(diǎn)F

1)求證:△AEC≌△ADB;(2)若AB2,∠BAC45°,當(dāng)四邊形ADFC是菱形時(shí),求BF的長.

【答案】1)見解析;(2BF

【解析】

1)由旋轉(zhuǎn)的性質(zhì)得到三角形ABC與三角形ADE全等,以及ABAC,利用全等三角形對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等得到兩對(duì)邊相等,一對(duì)角相等,利用SAS得到三角形AEC與三角形ADB全等即可;

2)根據(jù)∠BAC45°,四邊形ADFC是菱形,得到∠DBA=∠BAC45°,再由ABAD,得到三角形ABD為等腰直角三角形,求出BD的長,由BDDF求出BF的長即可.

解:(1)由旋轉(zhuǎn)的性質(zhì)得:ABC≌△ADE,且ABAC

AEAD,ACAB,∠BAC=∠DAE,

∴∠BAC+BAE=∠DAE+BAE,即∠CAE=∠DAB

AECADB中,

∴△AEC≌△ADBSAS);

2)∵四邊形ADFC是菱形,且∠BAC45°

∴∠DBA=∠BAC45°,

由(1)得:ABAD

∴∠DBA=∠BDA45°,

∴△ABD為直角邊為2的等腰直角三角形,

BD22AB2,即BD2,

ADDFFCACAB2

BFBDDF22

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+ca≠0)的圖象的頂點(diǎn)C的坐標(biāo)為(﹣1,﹣3),與x軸交于A﹣30)、B1,0),根據(jù)圖象回答下列問題:

1)寫出方程ax2+bx+c=0的根;

2)寫出不等式ax2+bx+c0的解集;

3)若方程ax2+bx+c=k有實(shí)數(shù)根,寫出實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】臨近端午節(jié),某食品店每天賣出300只粽子,賣出一只粽子的利潤為1.經(jīng)調(diào)查發(fā)現(xiàn),零售單價(jià)每降0.1元,每天可多賣出100只粽子.為了使每天獲得的利潤更多,該店決定把零售單價(jià)下降m0<m<1)元,

1)零售單價(jià)降價(jià)后,每只利潤為 元,該店每天可售出 只粽子.

2)在不考慮其他因素的條件下,當(dāng)零售單價(jià)下降多少元時(shí),才能使該店每天獲取的利潤是420元,且賣出的粽子更多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校園安全受到全社會(huì)的廣泛關(guān)注,東營市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:

1接受問卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計(jì)圖中基本了解部分所對(duì)應(yīng)扇形的圓心角為_______°

2請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

3若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到了解基本了解程度的總?cè)藬?shù);

4若從對(duì)校園安全知識(shí)達(dá)到了解程度的3個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用樹狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線的的頂點(diǎn)為.

1)頂點(diǎn)的坐標(biāo)為 .

2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).軸且

①點(diǎn)的坐標(biāo)為 ;

②過點(diǎn)軸的垂線,若直線與拋物線交于兩點(diǎn),該拋物線在之間的部分與線段所圍成的區(qū)域(包括邊界)恰有七個(gè)整點(diǎn),結(jié)合函數(shù)圖象,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ly=﹣2x+mx軸交于點(diǎn)A(﹣2,0),拋物線C1yx2+4x+3x軸的一個(gè)交點(diǎn)為B(點(diǎn)B在點(diǎn)A的左側(cè)),過點(diǎn)BBD垂直x軸交直線l于點(diǎn) D

1)求m的值和點(diǎn)B的坐標(biāo);

2)將△ABD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,點(diǎn)B,D的對(duì)應(yīng)點(diǎn)分別為點(diǎn)EF

點(diǎn)F的坐標(biāo)為   ;

將拋物線C1向右平移使它經(jīng)過點(diǎn)F,此時(shí)得到的拋物線記為C2,直接寫出拋物線C2的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知⊙D經(jīng)過原點(diǎn)O,與x軸、y軸分別交于AB兩點(diǎn),B點(diǎn)坐標(biāo)為(0),OC與⊙D交于點(diǎn)C,∠OCA30°.

1)⊙D的半徑;

2)圓中陰影部分的面積(結(jié)果保留根號(hào)和π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線交AC于點(diǎn)E,過點(diǎn)E作BE的垂線交AB于點(diǎn)F,⊙O是△BEF的外接圓.

(1)求證:AC是⊙O的切線.

(2)過點(diǎn)E作EH⊥AB于點(diǎn)H,求證:CD=HF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,AD//BC,AD=2,AB=5,BC=10,點(diǎn)E是邊BC上的一個(gè)動(dòng)點(diǎn)(不與B,C重合),作∠AEF=AEB,使邊EF交邊CD于點(diǎn)F,(不與C,D重合),線段BE=______________時(shí),△ABE與△CEF相似。

查看答案和解析>>

同步練習(xí)冊(cè)答案