【題目】如圖,在平行四邊形ABCD過(guò)點(diǎn)AAEBC垂足為E,連接DEF為線段DE上一點(diǎn),AFE=∠B

(1)求證ADF∽△DEC

(2)若AB=8,AD=,AF=AE的長(zhǎng)

【答案】(1)證明見(jiàn)解析;(2)6.

【解析】試題分析:(1)利用對(duì)應(yīng)兩角相等,證明兩個(gè)三角形相似ADF∽△DEC;

(2)利用ADF∽△DEC,可以求出線段DE的長(zhǎng)度;然后在Rt△ADE中,利用勾股定理求出線段AE的長(zhǎng)度.

試題解析:(1)證明:在□ABCD中,ADBCABCD,∴ ∠ADF=∠CED,∠B+∠C=180°,∴ ∠C=180°-∠B

∵ ∠AFE+∠AFD=180°,∠AFE=∠B,∴ ∠AFD=180°-∠B,∴ ∠AFD=∠C,∴ △ADF∽△DEC

(2)在□ABCD中,CDAB=8,∵ △ADF∽△DEC, ∴ ,∴ ,∴ DE=12.

ADBC,AEBC,∴ AEAD.在Rt△AED中,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分10分)

【感受聯(lián)系】在初二的數(shù)學(xué)學(xué)習(xí)中,我們感受過(guò)等腰三角形與直角三角形的密切聯(lián)系.等腰三角形作底邊上的高線可轉(zhuǎn)化為直角三角形,直角三角形沿直角邊翻折可得到等腰三角形等等.

【探究發(fā)現(xiàn)】某同學(xué)運(yùn)用這一聯(lián)系,發(fā)現(xiàn)了“30°角所對(duì)的直角邊等于斜邊的一半”.并給出了如下的部分探究過(guò)程,請(qǐng)你補(bǔ)充完整證明過(guò)程

已知:如圖,在中, °,°.

求證:

證明:

【靈活運(yùn)用】該同學(xué)家有一張折疊方桌如圖①所示,方桌的主視圖如圖②.經(jīng)測(cè)得, ,將桌子放平,兩條桌腿叉開(kāi)的角度.

求:桌面與地面的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為貫徹政府報(bào)告中“大眾創(chuàng)業(yè)、萬(wàn)眾創(chuàng)新”的精神,某鎮(zhèn)對(duì)轄區(qū)內(nèi)所有的小微企業(yè)按年利潤(rùn)w(萬(wàn)元)的多少分為以下四個(gè)類型:A類(w<10),B類(10≤w<20),C類(20≤w<30),D類(w≥30),該鎮(zhèn)政府對(duì)轄區(qū)內(nèi)所有小微企業(yè)的相關(guān)信息進(jìn)行統(tǒng)計(jì)后,繪制成以下條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中信息解答下列問(wèn)題:

(1)該鎮(zhèn)本次統(tǒng)計(jì)的小微企業(yè)總個(gè)數(shù)是 ,扇形統(tǒng)計(jì)圖中B類所對(duì)應(yīng)扇形圓心角的度數(shù)為 度,請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(2)為了進(jìn)一步解決小微企業(yè)在發(fā)展中的問(wèn)題,該鎮(zhèn)政府準(zhǔn)備召開(kāi)一次座談會(huì),每個(gè)企業(yè)派一名代表參會(huì).計(jì)劃從D類企業(yè)的4個(gè)參會(huì)代表中隨機(jī)抽取2個(gè)發(fā)言,D類企業(yè)的4個(gè)參會(huì)代表中有2個(gè)來(lái)自高新區(qū),另2個(gè)來(lái)自開(kāi)發(fā)區(qū).請(qǐng)用列表或畫樹(shù)狀圖的方法求出所抽取的2個(gè)發(fā)言代表都來(lái)自高新區(qū)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠C90°, AD平分∠BACBCDDEABE

求證:(1ACD≌△AED;(2)若AB=6,求DEB的周長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某蓄水池的排水管每小時(shí)排水8m3,6小時(shí)可將滿池水全部排空.

(1)蓄水池的容積是____________ m3

(2)如果增加排水管,使每小時(shí)排水量達(dá)到Q(m3),那么將滿池水排空所需時(shí)間為t(小時(shí)),則Q與t之間關(guān)系式為____________

(3)如果準(zhǔn)備在5小時(shí)內(nèi)將滿池水排空,那么每小時(shí)的排水量至少為____________ m3/小時(shí);

(4)已知排水管最多為每小時(shí)12m3,則至少____________小時(shí)可將滿池水全部排空.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD為臺(tái)球桌面,AD=260cm,AB=130cm,球目前在E點(diǎn)位置,AE=60cm.如果小丁瞄準(zhǔn)BC邊上的點(diǎn)F將球打過(guò)去,經(jīng)過(guò)反彈后,球剛好彈到D點(diǎn)位置.

1)求證:△BEF∽△CDF

2)求CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的三個(gè)頂點(diǎn)A,B,C的坐標(biāo)分別為A(4,0),B(0,-3),C(2,-4).

(1)在如圖的平面直角坐標(biāo)系中畫出△ABC關(guān)于x軸對(duì)稱的△A'B'C',并分別寫出A′,B′,C′的坐標(biāo);

(2)將△ABC向左平移5個(gè)單位,請(qǐng)畫出平移后的△A″B″C″,并寫出△A″B″C″各個(gè)頂點(diǎn)的坐標(biāo);

(3)求出(2)中的△ABC在平移過(guò)程中所掃過(guò)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】通過(guò)類比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類的目的.下面是一個(gè)案例,請(qǐng)補(bǔ)充完整.

原題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,EAF=45°,連接EF,則EFBEDF,試說(shuō)明理由.

(1)思路梳理

ABCD,

ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°ADG,可使ABAD重合.

∵∠ADCB=90°,

∴∠FDG=180°,點(diǎn)F、DG共線.

根據(jù)___________,SAS

易證AFG___________AEF

,得EFBEDF

(2)類比引申

如圖2,四邊形ABCD中,ABAD,BAD=90°.點(diǎn)E、F分別在邊BC、CD上,EAF=45°.若B、D都不是直角,則當(dāng)BD滿足等量關(guān)系______________B+D=180°

時(shí),仍有EFBEDF

(3)聯(lián)想拓展

如圖3,在ABC中,BAC=90°,ABAC,點(diǎn)D、E均在邊BC上,且DAE=45°.猜想BDDE、EC應(yīng)滿足的等量關(guān)系,并寫出推理過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小區(qū)便民超市為了了解顧客的消費(fèi)情況,在該小區(qū)居民中進(jìn)行調(diào)查,詢問(wèn)每戶人家每周到超市的次數(shù),下圖是根據(jù)調(diào)查結(jié)果繪制的,請(qǐng)問(wèn):

(1)這種統(tǒng)計(jì)圖通常被稱為什么統(tǒng)計(jì)圖?(2)此次調(diào)查共詢問(wèn)了多少戶人家?

(3)超過(guò)半數(shù)的居民每周去多少次超市?(4)請(qǐng)將這幅圖改為扇形統(tǒng)計(jì)圖.

查看答案和解析>>

同步練習(xí)冊(cè)答案