【題目】如圖,一艘輪船從位于燈塔的北偏東60°方向,距離燈塔60海里的小島出發(fā),沿正南方向航行一段時間后,到達位于燈塔的南偏東45°方向上的處,這時輪船與小島的距離是__________海里.

【答案】30+30

【解析】

過點CCDAB,則在RtACD中易得AD的長,再在RtBCD中求出BD,相加可得AB的長.

解:過CCDABD點,由題意可得,
ACD=30°,∠BCD=45°,AC=60
RtACD中,cosACD=,

AD=AC=30,CD=ACcosACD=60×,

RtDCB中,∵∠BCD=B=45°,
CD=BD=30,

AB=AD+BD=30+30

答:此時輪船所在的B處與小島A的距離是(30+30)海里.
故答案為:(30+30).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y=x0)的圖象與直線AB交于點A2,3),直線ABx軸交于點B4,0),過點Bx軸的垂線BC,交反比例函數(shù)的圖象于點C,在平面內(nèi)存在點D,使得以A,B,CD四點為頂點的四邊形為平行四邊形,則點D的坐標是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,,E、FBCCD邊上點,且,,AE 、AF分別交BD于點M,N,則MN的長度是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國古代偉大的數(shù)學(xué)家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個正方形和兩對全等的直角三角形,得到一個恒等式.后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示的矩形由兩個這樣的圖形拼成,若a4,b5,則該矩形的面積為(  )

A.50B.40C.30D.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABCACBCAC)繞點C順時針旋轉(zhuǎn)得△DEC,射線AB交射線DE于點F

1)∠AFD與∠BCE的關(guān)系是   ;

2)如圖2,當旋轉(zhuǎn)角為60°時,點D,點B與線段AC的中點O恰好在同一直線上,延長DO至點G,使OGOD,連接GC

①∠AFD與∠GCD的關(guān)系是   ,請說明理由;

②如圖3,連接AE,BE,若∠ACB45°,CE4,求線段AE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AQ、BNCN、DQ分別是∠DAB、∠ABC、∠BCD、∠CDA的平分線,AQBN相交于點P,CNDQ相交于點M,判斷四邊形MNPQ的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為2的⊙O分別與x軸,y軸交于A,D兩點,⊙O上兩個動點BC,使∠BAC60°恒成立,設(shè)△ABC的重心為G,則DG的最小值是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AGBC,垂足為點G,點E為邊AC上一點,BE=CE,點D為邊BC上一點,GD=GB,連接ADBE于點F

1)求證:∠ABE=EAF

2)求證:AE2=EFEC;

3)若CG=2AG,AD=2AF,BC=5,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組

請結(jié)合題意填空,完成本題的解答

(1)解不等式①,得___________

(2)解不等式②,得___________

(3)把不等式①和②的解集在數(shù)軸上表示出來:

(4)原不等式組的解集為_______________

查看答案和解析>>

同步練習(xí)冊答案