【題目】已知:如圖,ABC是等邊三角形,AECD,BQADQ,BEAD于點P

(1)求證:ABE≌△CAD;

(2)若PQ=2,BE=5,求PE的值.

【答案】1)見解析;(2PE=1

【解析】

1)根據(jù)等邊三角形的性質(zhì)得到AB=AC,∠BAE=C=60°,證明ABE≌△CAD

2)根據(jù)直角三角形的性質(zhì)得到BP=2PQ,再根據(jù)題意BP=2PQ =4,則PE =1.

(1)∵△ABC是等邊三角形,
AB=AC,BAE=C=60°,
ABECAD中,
,
∴△ABE≌△CAD(SAS),
(2) ∵△ABE≌△CAD,

∴∠ABE=CAQ,
∴∠BPQ=BAP+ABE=BAP+CAD=BAC=60°,∵BQAD,
∴∠PBQ=90°BPQ=90°60°=30°
BP=2PQ.

PQ2,BE5

BP=2PQ =4,PE = BE- PB5-4=1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3 月初某商品價格上漲,每件價格上漲 20%.用 3000 元買到的該商品 件數(shù)比漲價前少 20 件.3 月下旬該商品開始降價,經(jīng)過兩次降價后,該商品價格為每 件 19.2 元.

(1)求 3 月初該商品上漲后的價格;

(2)若該商品兩次降價率相同,求該商品價格的平均降價率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC底邊BC上的高為16 cm,當(dāng)BC的長xcm)從小到大變化時,△ABC的面積ycm2)也隨之發(fā)生變化.

1)在這個變化過程中,常量是________,自變量是________,因變量是_________;

2)寫出yx之間的關(guān)系式為_______________;

3)當(dāng)x5 cm時,y=________cm2;當(dāng)x15 cm時,y=________cm2yx的增大而__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABCBA=BC,點DAB延長線上一點,DF⊥ACFBCE,

求證:△DBE是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小淇在說明 直角三角形斜邊上的中線等于斜邊的一半是真命題,部分思路如下:如圖,在∠ACB內(nèi)做∠BCD=∠B,CDAB相交于點D,…….請根據(jù)以上思路,完成證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AC的垂直平分線MN分別交AB,ACDE.若AE=5,BCD的周長17,求ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】時代中學(xué)從學(xué)生興趣出發(fā),實施體育活動課走班制.為了了解學(xué)生最喜歡的一種球類運動,以便合理安排活動場地,在全校至少喜歡一種球類(乒乓球、羽毛球、排球、籃球、足球)運動的1200名學(xué)生中,隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查(每人只能在這五種球類運動中選擇一種).調(diào)查結(jié)果統(tǒng)計如下:

球類名稱

乒乓球

羽毛球

排球

籃球

足球

人數(shù)

42

15

33

解答下列問題:

(1)這次抽樣調(diào)查中的樣本是________;

(2)統(tǒng)計表中,________,________;

(3)試估計上述1200名學(xué)生中最喜歡乒乓球運動的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著我市農(nóng)產(chǎn)品整體品牌形象勝一籌!”的推出,現(xiàn)代農(nóng)業(yè)得到了更快發(fā)展.某農(nóng)場為擴(kuò)大生產(chǎn)建設(shè)了一批新型鋼管裝配式大棚,如圖1.線段AB,BD分別表示大棚的墻高和跨度,AC表示保溫板的長.已知墻高AB2米,墻面與保溫板所成的角∠BAC=150°,在點D處測得A點、C點的仰角分別為9°,15.6°,如圖2.求保溫板AC的長是多少米?(精確到0.1米)

(參考數(shù)據(jù):≈0.86,sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin15.6°≈0.27,cos15.6°≈0.96,tan15.6°≈0.28)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘,在整個步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時間t(分)之間的關(guān)系如圖所示,下列結(jié)論:

甲步行的速度為60米/分;

乙走完全程用了32分鐘;

乙用16分鐘追上甲;

乙到達(dá)終點時,甲離終點還有300米

其中正確的結(jié)論有(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

同步練習(xí)冊答案