【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y(k0)的圖象交于A、B點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)A的半標(biāo)為(2,3)

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)如圖,若將點(diǎn)C沿y軸向上平移4個(gè)單位長度至點(diǎn)F,連接AF、BF,求△ABF的面積.

【答案】(1)一次函數(shù)的解析式為y=﹣x+1,反比例函數(shù)的解析式為y=﹣;(2)10.

【解析】

1)根據(jù)待定系數(shù)法即可求得;

2)由一次函數(shù)的解析式求得C點(diǎn)的坐標(biāo),進(jìn)而求得CF4,一次函數(shù)的解析式和反比例函數(shù)的解析式聯(lián)立方程求得交點(diǎn)A、B的坐標(biāo),然后根據(jù)SABFSACF+SBCF求得即可.

(1)(2,3)分別代入y=﹣x+b,與y中,有32+b,3

解得b1,k=﹣6,

∴一次函數(shù)的解析式為y=﹣x+1,反比例函數(shù)的解析式為y=﹣;

(2)一次函數(shù)的解析式為y=﹣x+1,當(dāng)x0時(shí),y1

C(0,1)

若將點(diǎn)C向上平移4個(gè)單位長度得到點(diǎn)F,則CF4

∵一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y (k0)的圖象交于A、B兩點(diǎn)

解得,

B(3,﹣2)A(2,3)

SABF×4×(2+3)10

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+ca0)與直線y=﹣x2相交于A(﹣20),Bm,﹣6)兩點(diǎn),且拋物線經(jīng)過點(diǎn)C 5,0).點(diǎn)P是直線下方的拋物線上異于A、B的動(dòng)點(diǎn).過點(diǎn)PPDx軸于點(diǎn)D,交直線于點(diǎn)E

1)求拋物線的解析式;

2)連結(jié)PA、PB、BD,當(dāng)SADBSPAB時(shí),求SPAB;

3)是否存在點(diǎn)P,使得△PBE為直角三角形?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】.已知:在矩形中,是對角線,于點(diǎn),于點(diǎn)

1)如圖1,求證:;

2)如圖2,當(dāng)時(shí),連接.,在不添加任何輔助線的情況下,請直接寫出圖2中四個(gè)三角形,使寫出的每個(gè)三角形的面積都等于矩形面積的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)市政府關(guān)于“垃圾不落地市區(qū)更美麗”的主題宣傳活動(dòng),某校隨機(jī)調(diào)查了部分學(xué)生對垃圾分類知識的掌握情況.調(diào)查選項(xiàng)分為“A:非常了解,B:比較了解,C:了解較少,D:不了解”四種,并將調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中提供的信息,解答下列問題:

1)把兩幅統(tǒng)計(jì)圖補(bǔ)充完整;

2)若該校學(xué)生有2000名,根據(jù)調(diào)查結(jié)果,估計(jì)該校“非常了解”與“比較了解”的學(xué)生共有    名;

3)已知“非常了解”的同學(xué)有3名男生和1名女生,從中隨機(jī)抽取2名進(jìn)行垃圾分類的知識交流,請用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB12P是邊AB上一點(diǎn),把△PBC沿直線PC折疊,頂點(diǎn)B的對應(yīng)點(diǎn)是點(diǎn)G,過點(diǎn)BBECG,垂足為E且在AD上,BEPC于點(diǎn)F

1)如圖1,若點(diǎn)EAD的中點(diǎn),求證:△AEB≌△DEC;

2)如圖2,當(dāng)AD25,且AEDE時(shí),求的值;

3)如圖3,當(dāng)BEEF108時(shí),求BP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)DRtABC斜邊AB的中點(diǎn),點(diǎn)E在邊AC上.△A'B′C′與△ABC關(guān)于直線BE對稱,連結(jié)A′C.且∠CA′C'90°.若AC4,BC3.則AE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若三角形的一條角平分線與被平分的角的一邊相等,則稱這個(gè)三角形為弱等腰三角形,這條角平分線叫做這個(gè)三角形的弱線,如圖①,AD是△ABC的角平分線,當(dāng)ADAB時(shí),則△ABC弱等腰三角形,線段AD是△ABC弱線

1)如圖②,在△ABC中.∠B60°,∠C45°.求證:△ABC弱等腰三角形

2)如圖③,在矩形ABCD中,AB3,BC4.以B為圓心在矩形內(nèi)部作,交BC于點(diǎn)E,點(diǎn)F上一點(diǎn),連結(jié)CF.且CF有另一個(gè)交點(diǎn)G.連結(jié)BG.當(dāng)BG是△BCF的“弱線”時(shí),求CG的長.

3)已知△ABC是“弱等腰三角形”,AD是“弱線”,且AB3BD,求ACBC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,中,,,點(diǎn)分別在邊上,,連接,若,則線段的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABBC10,tanABC,點(diǎn)P是邊BC上的一點(diǎn),M是線段AP上一點(diǎn),線段PM繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°得線段PN,設(shè)BPt

(1)如圖①,當(dāng)點(diǎn)P在點(diǎn)B,點(diǎn)MAP中點(diǎn)時(shí),試求AN的長;

(2)如圖②,當(dāng)時(shí),

①求點(diǎn)NBC邊的距離(用含t的代數(shù)式表示);

②當(dāng)點(diǎn)P從點(diǎn)B運(yùn)動(dòng)至點(diǎn)C時(shí),試求點(diǎn)N運(yùn)動(dòng)路徑的長.

查看答案和解析>>

同步練習(xí)冊答案