【題目】如圖,拋物線yax2+bx+ca0)與直線y=﹣x2相交于A(﹣2,0),Bm,﹣6)兩點,且拋物線經(jīng)過點C 50).點P是直線下方的拋物線上異于A、B的動點.過點PPDx軸于點D,交直線于點E

1)求拋物線的解析式;

2)連結(jié)PAPB、BD,當SADBSPAB時,求SPAB;

3)是否存在點P,使得△PBE為直角三角形?若存在,求出點P的坐標,若不存在,請說明理由.

【答案】1yx23x10;(2SPAB;(3)存在,滿足條件點P的坐標為(0,﹣10)或(﹣1,6).

【解析】

1)因為拋物線經(jīng)過A-20),C50),可以假設(shè)拋物線的解析式y=ax+2)(x-5),把B4,-6)代入y=ax+2)(x-5),可得a=1解決問題;

2)設(shè)Pxx2-3x-10),根據(jù)SADBSPAB,構(gòu)建方程解決問題即可;

3)分兩種情形:①∠PBE=90°.②∠BPE=90°.分別求解即可解決問題.

1)將Bm,﹣6)代入y=﹣x2-6=﹣m2,解得m=4

B4,﹣6),

∵拋物線經(jīng)過A(﹣20),C5,0),

∴可以假設(shè)拋物線的解析式yax+2)(x5),

B4,﹣6)代入yax+2)(x5),可得a1,

∴拋物線的解析式為yx23x10

2)設(shè)Px,x23x10),

∵直線AB的解析式為y=﹣x2,

Dx,0),Ex,﹣x2),

PE=﹣x2+2x+8,

SADBSPAB,

×(x+2)×6××(﹣x2+2x+8)×6,

整理得:2x2x100,

解得x或﹣2(舍去).

PE,

SPAB×6×

3當∠PBE90°時,PBAB,

∴設(shè)直線PB的解析式yxb

B4,﹣6)代入解得b=10,

∴直線PB的解析式yx10

,解得(舍去),

p0,﹣10).

當∠BPE90°時,PBx軸,

由﹣6x23x10,解得x4(舍去)或﹣1,

p(﹣16),

綜上所述,滿足條件點P的坐標為(0,﹣10)或(﹣1,6).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:在綜合實踐課上,老師讓同學(xué)們以菱形紙片的剪拼為主題開展數(shù)學(xué)活動,如圖(1),將一張菱形紙片ABCD(∠BAD60°)沿對角線AC剪開,得到ABCACD

操作發(fā)現(xiàn):1)將圖(1)中的ABCA為旋轉(zhuǎn)中心,順時針方向旋轉(zhuǎn)角αα60°)得到如圖(2)所示ABC,分別延長BCDC交于點E,發(fā)現(xiàn)CECE.請你證明這個結(jié)論.

2)在問題(1)的基礎(chǔ)上,當旋轉(zhuǎn)角α等于多少度時,四邊形ACEC是菱形?請你利用圖(3)說明理由.

拓展探究:3)在滿足問題(2)的基礎(chǔ)上,過點CCFAC,與DC交于點F.試判斷AD、DFAC的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx2x軸交于A、B兩點,與y軸交于C點,且A(一1,0).

⑴求拋物線的解析式及頂點D的坐標;

⑵判斷ABC的形狀,證明你的結(jié)論;

⑶點M(m,0)x軸上的一個動點,當CM+DM的值最小時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)店專售一款電動牙刷,其成本為20/支,銷售中發(fā)現(xiàn),該商品每天的銷售量y(支)與銷售單價x(/支)之間存在如圖所示的關(guān)系.

(1)yx之間的函數(shù)關(guān)系式.

(2)由于湖北省武漢市爆發(fā)了新型冠狀病毒肺炎(簡稱新冠肺炎)疫情,該網(wǎng)店店主決定從每天獲得的利潤中抽出200元捐獻給武漢,為了保證捐款后每天剩余利潤不低于550元,如何確定這款電動牙刷的銷售單價?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商業(yè)集團新進了40臺空調(diào)機,60臺電冰箱,計劃調(diào)配給下屬的甲、乙兩個連鎖店銷售,其中70臺給甲連鎖店,30臺給乙連鎖店.兩個連鎖店銷售這兩種電器每臺的利潤(單位:元)如下表:

空調(diào)機

電冰箱

甲連鎖店

200

170

乙連鎖店

160

150

設(shè)集團調(diào)配給甲連鎖店臺空調(diào)機,集團賣出這100臺電器的總利潤為()

(1)關(guān)于的函數(shù)關(guān)系式,并求出的取值范圍;

(2)為了促銷,集團決定僅對甲連鎖店的空調(diào)機每臺讓利元銷售,其他的銷售利潤都不變,并且讓利后每臺空調(diào)機的利潤比甲連鎖店銷售每臺電冰箱的利潤至少高出10元,問該集團應(yīng)該如何設(shè)計調(diào)配方案,能使總利潤達到最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在A處的正東方向有一港口B.某巡艇從A處沿著北偏東60°方向巡邏,到達C處時接到命令,立刻在C處沿東南方向以20海里/小時的速度行駛3小時到達港口B.若取結(jié)果保留一位小數(shù),則AB間的距離為()

A.42.3海里B.73.5海里C.115.8海里D.119.9海里

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結(jié)論

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.

其中正確結(jié)論的個數(shù)是(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,點E、F分別為正方形ABCD的邊BC、CD上一點,ACBD交于點O,且∠EAF45°,AE,AF分別交對角線BD于點M,N,則有以下結(jié)論:①AOM∽△ADF;②EFBE+DF;③∠AEB=∠AEF=∠ANM;④SAEF2SAMN,以上結(jié)論中,正確的個數(shù)有(。﹤.

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y(k0)的圖象交于A、B點,與y軸交于點C,其中點A的半標為(23)

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)如圖,若將點C沿y軸向上平移4個單位長度至點F,連接AFBF,求△ABF的面積.

查看答案和解析>>

同步練習(xí)冊答案