【題目】如圖,點(diǎn)C在線段AB上,AC=8cm,CB=6cm,點(diǎn)M、N分別是AC、BC的中點(diǎn).

(1)求線段MN的長(zhǎng);

(2)若C為線段AB上任一點(diǎn),滿足AC+CB=acm,其它條件不變,你能猜想MN的長(zhǎng)度嗎?并說(shuō)明理由.

【答案】(1)7cm(2)a.

【解析】

試題分析:(1)根據(jù)“點(diǎn)M、N分別是AC、BC的中點(diǎn)”,先求出MC、CN的長(zhǎng)度,再利用MN=CM+CN即可求出MN的長(zhǎng)度;

(2)與(1)同理,先用AC、BC表示出MC、CN,MN的長(zhǎng)度就等于AC與BC長(zhǎng)度和的一半.

解:(1)點(diǎn)M、N分別是AC、BC的中點(diǎn),

CM=AC=4cm,CN=BC=3cm,

MN=CM+CN=4+3=7cm;

(2)同(1)可得CM=AC,CN=BC,

MN=CM+CN=AC+BC=(AC+BC)=a.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代對(duì)勾股定理有深刻的認(rèn)識(shí).

(1)三國(guó)時(shí)代吳國(guó)數(shù)學(xué)家趙爽第一次對(duì)勾股定理加以證明:用四個(gè)全等的圖1所示的直角三角形拼成一個(gè)圖2所示的大正方形,中間空白部分是一個(gè)小正方形.如果大正方形的面積是13,小正方形的面積是1,直角三角形的兩直角邊分別為a,b,求(a+b)2的值;

(2)清朝的康熙皇帝對(duì)勾股定理也很有研究,他著有《積求勾股法》:用現(xiàn)代的數(shù)學(xué)語(yǔ)言描述就是:若直角三角形的三邊長(zhǎng)分別為3,4,5的整數(shù)倍,設(shè)其面積為S,則求其邊長(zhǎng)的方法為:第一步=m;第二步: =k;第三步:分別用3,4,5乘k,得三邊長(zhǎng).當(dāng)面積S等于150時(shí),請(qǐng)用“積求勾股法”求出這個(gè)直角三角形的三邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列哪組條件能夠判別四邊形ABCD是平行四邊形?(  。

A. AB∥CD,AD=BC B. AB=CD,AD=BC

C. ∠A=∠B,∠C=∠D D. AB=AD,CB=CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)計(jì)算:tan260°+4sin30°cos45°
(2)解方程:x2﹣4x+3=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】棱長(zhǎng)為a的小正方體,按照如圖所示的方法一直維續(xù)擺放,自上而下分別叫第1層、第2層、……n(n0)層,第n層的小方體的個(gè)數(shù)記為S.

(1)完成下表:

n

1

2

3

4

S

1

3

_____

_____

(2)上述活動(dòng)中,自變量和因變量分別是什么?

(3)研究上表可以發(fā)現(xiàn)Sn的增大而增大,且有一定的規(guī)律,請(qǐng)你用式子來(lái)表示Sn的關(guān)系,并計(jì)算當(dāng)n=10時(shí)S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AD=CD,∠DAB=∠ACB=90°,過(guò)點(diǎn)D作DE⊥AC,垂足為F,DE與AB相交于點(diǎn)E.
(1)求證:ABAF=CBCD;
(2)已知AB=15cm,BC=9cm,P是線段DE上的動(dòng)點(diǎn).設(shè)DP=x cm,梯形BCDP的面積為ycm2
①求y關(guān)于x的函數(shù)關(guān)系式.
②y是否存在最大值?若有求出這個(gè)最大值,若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在Rt△ABC中,∠C=90°,若sinA= , 則cosB的值是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(3,4),點(diǎn)B(﹣1,1),在x軸上有兩動(dòng)點(diǎn)E、F,且EF=1,線段EFx軸上平移,當(dāng)四邊形ABEF的周長(zhǎng)取得最小值時(shí),點(diǎn)E的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】東臺(tái)教育局為幫助全市貧困師生舉行一日捐活動(dòng),甲、乙兩校教師各捐款30000元,已知“……”,設(shè)乙學(xué)校教師有x人,則可得方程,根據(jù)此情景,題中用“……”表示的缺失的條件應(yīng)補(bǔ)(

A. 乙校教師比甲校教師人均多捐20元,且甲校教師的人數(shù)比乙校教師的人數(shù)多20%

B. 甲校教師比乙校教師人均多捐20元,且乙校教師的人數(shù)比甲校教師的人數(shù)多20%

C. 甲校教師比乙校教師人均多捐20元,且甲校教師的人數(shù)比乙校教師的人數(shù)多20%

D. 乙校教師比甲校教師人均多捐20元,且乙校教師的人數(shù)比甲校教師的人數(shù)多20%

查看答案和解析>>

同步練習(xí)冊(cè)答案