【題目】如圖,已知點(diǎn)A(﹣4,2),B(﹣1,﹣2),平行四邊形ABCD的對(duì)角線交于坐標(biāo)原點(diǎn)O.
(1)請(qǐng)直接寫(xiě)出點(diǎn)C、D的坐標(biāo);
(2)寫(xiě)出從線段AB到線段CD的變換過(guò)程;
(3)求△AOB的面積.
【答案】(1)C(4,﹣2),D(1,2);(2)繞點(diǎn)O旋轉(zhuǎn)180°;(3)5.
【解析】
(1)利用中心對(duì)稱圖形的性質(zhì)得出C,D兩點(diǎn)坐標(biāo);
(2)利用平行四邊形的性質(zhì)以及旋轉(zhuǎn)的性質(zhì)得出即可;
(3)根據(jù)△AOB的面積=△AOD的面積,利用面積公式即可求解.
(1)∵四邊形ABCD是平行四邊形,
∴四邊形ABCD關(guān)于O中心對(duì)稱,
∵A(﹣4,2),B(﹣1,﹣2),
∴C(4,﹣2),D(1,2);
(2)線段AB到線段CD的變換過(guò)程是:繞點(diǎn)O旋轉(zhuǎn)180°;
(3)∵A(﹣4,2),D(1,2);
∴△AOD的面積=×5×2=5,
∵O為BD中點(diǎn),
∴△AOB的面積=△AOD的面積=5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是直角三角形,∠BAC=90°,D是斜邊BC的中點(diǎn),E,F分別是AB,AC邊上的點(diǎn),且DE⊥DF.
(1)如圖1,試說(shuō)明;
(2)如圖2,若AB=AC,BE=12,CF=5,求△DEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正三角形的邊長(zhǎng)為.
如圖①,正方形的頂點(diǎn)、在邊上,頂點(diǎn)在邊上,在正三角形及其內(nèi)部,以點(diǎn)為位似中心,作正方形的位似正方形,且使正方形的面積最大(不要求寫(xiě)作法);
求中作出的正方形的邊長(zhǎng);
如圖②,在正三角形中放入正方形和正方形,使得、在邊上,點(diǎn)、分別在邊、上,求這兩個(gè)正方形面積和的最大值和最小值,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的弦AD∥BC,過(guò)點(diǎn)D的切線交BC的延長(zhǎng)線于點(diǎn)E,AC∥DE交BD于點(diǎn)H,DO及延長(zhǎng)線分別交AC、BC于點(diǎn)G、F.
(1)求證:DF垂直平分AC;
(2)求證:FC=CE;
(3)若弦AD=5cm,AC=8cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點(diǎn)A(1,0)和點(diǎn)B(﹣3,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)設(shè)拋物線的對(duì)稱軸與x軸交于點(diǎn)M,問(wèn)在對(duì)稱軸上是否存在點(diǎn)P,使△CMP為等腰三角形?若存在,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖②,若點(diǎn)E為第二象限拋物線上一動(dòng)點(diǎn),連接BE、CE,求四邊形BOCE面積的最大值,并求此時(shí)E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究:已知,如圖1,在△ABC中,∠ACB=90°,AC=6,BC=8,D是線段AB上一個(gè)動(dòng)點(diǎn).
(1)畫(huà)出點(diǎn)D關(guān)于直線AC、BC的對(duì)稱點(diǎn)M、N;
(2)在(1)的條件下,連接MN
①求證:M、C、N三點(diǎn)在同一條直線上;
②求MN的最小值.
應(yīng)用:已知,如圖2,在△ABC中,∠C=30°,AC=CB,AB=3,△ABC的面積為S,點(diǎn)D、E、F分別是AB、AC、BC上三個(gè)動(dòng)點(diǎn),請(qǐng)用含S的代數(shù)式直接表示△DEF的周長(zhǎng)的最小值,并在圖2中畫(huà)出符合題意的圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,M是OA上一點(diǎn),過(guò)M作AB的垂線交AC于點(diǎn)N,交BC的延長(zhǎng)線于點(diǎn)E,直線CF交EN于點(diǎn)F,若∠BAC=30°,且∠ECF=∠E.
(1)試判斷CF與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)設(shè)⊙O的半徑為2,且AC=CE,求AM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,8),點(diǎn)B(6,8),若點(diǎn)P同時(shí)滿足下列條件:①點(diǎn)P到A,B兩點(diǎn)的距離相等;②點(diǎn)P到∠xOy的兩邊距離相等.則點(diǎn)P的坐標(biāo)為( ).
A.(3,5)B.(6,6)C.(3,3)D.(3,6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com