【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,8),點(diǎn)B(6,8),若點(diǎn)P同時(shí)滿足下列條件:①點(diǎn)P到A,B兩點(diǎn)的距離相等;②點(diǎn)P到∠xOy的兩邊距離相等.則點(diǎn)P的坐標(biāo)為( ).
A.(3,5)B.(6,6)C.(3,3)D.(3,6)
【答案】C
【解析】
由點(diǎn)P到A、B兩點(diǎn)的距離相等,故P在AB的中垂線上,再根據(jù)點(diǎn)P到∠xOy的兩邊距離相等,故點(diǎn)P在∠xOy的角平分線上,可在圖中作出點(diǎn)P,然后根據(jù)A、B的坐標(biāo)即可求出P點(diǎn)坐標(biāo).
解:∵點(diǎn)P到A,B兩點(diǎn)的距離相等,點(diǎn)P到∠xOy的兩邊距離相等
∴點(diǎn)P在AB的中垂線上,也在∠xOy的角平分線上
∵點(diǎn)P即為AB的中垂線與∠xOy的角平分線的交點(diǎn),如下圖所示,點(diǎn)P即為所求
∵AB⊥y軸
∴AB的中垂線∥y軸
∴點(diǎn)P的橫坐標(biāo)與AB中點(diǎn)的橫坐標(biāo)相等,且AB中點(diǎn)橫坐標(biāo)為:
∴P點(diǎn)橫坐標(biāo)為3
∵點(diǎn)P在∠xOy的角平分線上
∴P點(diǎn)橫坐標(biāo)=P點(diǎn)縱坐標(biāo)=3
∴點(diǎn)P的坐標(biāo)為(3,3)
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)P是CD邊上一動(dòng)點(diǎn),連接PA,分別過(guò)點(diǎn)B、D作BE⊥PA、DF⊥PA,垂足分別為E、F,如圖①。
(1)請(qǐng)?zhí)骄?/span>BE、DF、EF這三條線段的長(zhǎng)度具有怎樣的數(shù)量關(guān)系?并說(shuō)明理由。
(2)若點(diǎn)P在DC的延長(zhǎng)線上,如圖②,那么這三條線段的長(zhǎng)度之間又具有怎樣的數(shù)量關(guān)系?直接寫出結(jié)論。
(3)若點(diǎn)P在CD的延長(zhǎng)線上呢,如圖③,直接寫出結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A(﹣4,2),B(﹣1,﹣2),平行四邊形ABCD的對(duì)角線交于坐標(biāo)原點(diǎn)O.
(1)請(qǐng)直接寫出點(diǎn)C、D的坐標(biāo);
(2)寫出從線段AB到線段CD的變換過(guò)程;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把拋物線y=x2平移得到拋物線m,拋物線m經(jīng)過(guò)點(diǎn)A(﹣6,0)和原點(diǎn)O(0,0),它的頂點(diǎn)為P,它的對(duì)稱軸與拋物線y=x2交于點(diǎn)Q,則圖中陰影部分的面積為 ▲ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,足球場(chǎng)上守門員在O處開出一高球,球從離地面1米的A處飛出(A在y軸上),運(yùn)動(dòng)員乙在距O點(diǎn)6米的B處發(fā)現(xiàn)球在自己頭的正上方達(dá)到最高點(diǎn)M,距地面約4米高,球落地后又一次彈起.據(jù)實(shí)驗(yàn)測(cè)算,足球在草坪上彈起后的拋物線與原來(lái)的拋物線形狀相同,最大高度減少到原來(lái)最大高度的一半.
(1)求足球開始飛出到第一次落地時(shí),該拋物線的表達(dá)式.
(2)足球第一次落地點(diǎn)C距守門員多少米?(取)
(3)運(yùn)動(dòng)員乙要搶到第二個(gè)落點(diǎn)D,他應(yīng)再向前跑多少米?(取)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以等邊△ABC的邊AC為腰作等腰△CAD,使AC=AD,連接BD,若∠DBC=41°,∠CAD=________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水產(chǎn)養(yǎng)殖戶進(jìn)行小龍蝦養(yǎng)殖.已知每千克小龍蝦養(yǎng)殖成本為6元,在整個(gè)銷售旺季的80天里,銷售單價(jià)p(元/千克)與時(shí)間第t(天)之間的函數(shù)關(guān)系為:
p=,日銷售量y(千克)與時(shí)間第t(天)之間的函數(shù)關(guān)系如圖所示.
(1)求日銷售量y與時(shí)間t的函數(shù)解析式;
(2)哪一天的日銷售利潤(rùn)最大?最大利潤(rùn)是多少?
(3)該養(yǎng)殖戶有多少天日銷售利潤(rùn)不低于2 400元?
(4)在實(shí)際銷售的前40天中,該養(yǎng)殖戶決定每銷售1千克小龍蝦,就捐贈(zèng)m(m<7)元給村里的特困戶.在這前40天中,每天扣除捐贈(zèng)后的日銷售利潤(rùn)隨時(shí)間t的增大而增大,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(m≠0)的圖象相交于點(diǎn)A(﹣3,﹣1)和點(diǎn)B,與y軸交于點(diǎn)C,△OAC的面積為3.
(1)求反比例函數(shù)的解析式;
(2)求一次函數(shù)的解析式,并寫出點(diǎn)B的坐標(biāo);
(3)連接BO并延長(zhǎng)交雙曲線的另一支于點(diǎn)E,將直線y=kx+b向下平移a (a>0)個(gè)單位長(zhǎng)度后恰好經(jīng)過(guò)點(diǎn)E,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,、分別是、邊上的點(diǎn),、、、…、是邊的等分點(diǎn),,.如圖1,若,,則 __________度;如圖2,若,,則 __________(用含,的式子表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com