【題目】如圖,O的弦ADBC,過點(diǎn)D的切線交BC的延長(zhǎng)線于點(diǎn)EACDEBD于點(diǎn)H,DO及延長(zhǎng)線分別交ACBC于點(diǎn)G、F

(1)求證:DF垂直平分AC

(2)求證:FCCE;

(3)若弦AD5cmAC8cm,求O的半徑.

【答案】(1)詳見解析;(2)詳見解析;(3)

【解析】

1)由DE⊙O的切線,且DF過圓心O,可得DF⊥DE,又由AC∥DE,則DF⊥AC,進(jìn)而可知DF垂直平分AC

2)可先證△AGD≌△CGF,四邊形ACED是平行四邊形,即可證明FC=CE

3)連接AO可先求得AG=4cm,在Rt△AGD中,由勾股定理得GD=3cm;設(shè)圓的半徑為r,則AO=r,OG=r-3,在Rt△AOG中,由勾股定理可求得r=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組觀察下雨天學(xué)校池塘水面高度h(單位:cm)與觀察時(shí)間t(單位:min)的關(guān)系,并根據(jù)當(dāng)天觀察數(shù)據(jù)畫出了如圖所示的圖象,請(qǐng)你結(jié)合圖象回答下列問題:

(1)求線段BC的表達(dá)式;

(2)試求出池塘原有水面的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)PCD邊上一動(dòng)點(diǎn),連接PA,分別過點(diǎn)B、DBEPA、DFPA,垂足分別為EF,如圖①。

1)請(qǐng)?zhí)骄?/span>BE、DF、EF這三條線段的長(zhǎng)度具有怎樣的數(shù)量關(guān)系?并說明理由。

2)若點(diǎn)PDC的延長(zhǎng)線上,如圖②,那么這三條線段的長(zhǎng)度之間又具有怎樣的數(shù)量關(guān)系?直接寫出結(jié)論。

3)若點(diǎn)PCD的延長(zhǎng)線上呢,如圖③,直接寫出結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1ABC中,AGBC于點(diǎn)G,以A為直角頂點(diǎn),分別以ABAC為直角邊,向ABC作等腰RtABE和等腰RtACF,過點(diǎn)E、F作射線GA的垂線,垂足分別為P、Q。

1)求證:⊿AEP≌⊿BAG;

2)試探究EPFQ之間的數(shù)量關(guān)系,并證明你的結(jié)論;

3)如圖2,若連接EFGA的延長(zhǎng)線于H,由(2)中的結(jié)論你能判斷EHFH的大小關(guān)系嗎?并說明理由;

4)在(3)的條件下,若BC=AG=10,請(qǐng)直接寫出SAEF= .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)四點(diǎn)在一條直線上,,.老師說:再添加一個(gè)條件就可以使.下面是課堂上三個(gè)同學(xué)的發(fā)言,甲說:添加;乙說:添加;丙說:添加.

1)甲、乙、丙三個(gè)同學(xué)說法正確的是________

2)請(qǐng)你從正確的說法中選擇一種,給出你的證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的部分圖象如圖所示,其中圖象與x軸交于點(diǎn)A(-1,0),與y軸交于點(diǎn)C(0,-5),且經(jīng)過點(diǎn)D(3,8).(1)求此二次函數(shù)的解析式; (2)用配方法將將此二次函數(shù)的解析式寫成的形式,并直接寫出此二次函數(shù)圖象的頂點(diǎn)坐標(biāo)以及它與x軸的另一個(gè)交點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A(﹣4,2),B(﹣1,﹣2),平行四邊形ABCD的對(duì)角線交于坐標(biāo)原點(diǎn)O.

(1)請(qǐng)直接寫出點(diǎn)C、D的坐標(biāo);

(2)寫出從線段AB到線段CD的變換過程;

(3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把拋物線y=x2平移得到拋物線m,拋物線m經(jīng)過點(diǎn)A(﹣6,0)和原點(diǎn)O(0,0),它的頂點(diǎn)為P,它的對(duì)稱軸與拋物線y=x2交于點(diǎn)Q,則圖中陰影部分的面積為  ▲  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(m≠0)的圖象相交于點(diǎn)A(﹣3,﹣1)和點(diǎn)B,與y軸交于點(diǎn)C,△OAC的面積為3.

(1)求反比例函數(shù)的解析式;

(2)求一次函數(shù)的解析式,并寫出點(diǎn)B的坐標(biāo);

(3)連接BO并延長(zhǎng)交雙曲線的另一支于點(diǎn)E,將直線y=kx+b向下平移a (a>0)個(gè)單位長(zhǎng)度后恰好經(jīng)過點(diǎn)E,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案